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TOP: Optimizing Vehicle Driving Speed with Vehicle
Trajectories for Travel Time Minimization and Road
Congestion Avoidance

LI YAN and HAIYING SHEN, University of Virginia, USA

Traffic congestion control is pivotal for intelligent transportation systems. Previous works optimize vehicle

speed for different objectives such as minimizing fuel consumption and minimizing travel time. However,

they overlook the possible congestion generation in the future (e.g., in 5 minutes), which may degrade the

performance of achieving the objectives. In this article, we propose a vehicle Trajectory–based driving speed

OPtimization strategy (TOP) to minimize vehicle travel time and meanwhile avoid generating congestion.

Its basic idea is to adjust vehicles’ mobility to alleviate road congestion globally. TOP has a framework for

collecting vehicles’ information to a central server, which calculates the parameters depicting the future road

condition (e.g., driving time, vehicle density, and probability of accident). Based on the collected information,

the central server also measures the friendship among the vehicles and considers the delay caused by red

traffic signals to help estimating the vehicle density of the road segments. The server then formulates a non-

cooperative Stackelberg game considering these parameters, in which when each vehicle aims to minimize

its travel time, the road congestion is also proactively avoided. After the Stackelberg equilibrium is reached,

the optimal driving speed for each vehicle and the expected vehicle density that maximizes the utilization

of the road network are determined. Our real trace analysis confirms some characteristics of vehicle mobil-

ity to support the design of TOP. Extensive trace-driven experiments show the effectiveness and superior

performance of TOP in comparison with other driving speed optimization methods.
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1 INTRODUCTION

In recent decades, Intelligent Transportation Systems (ITSs) have received much attention. The
ITSs summarize advanced applications aiming at providing innovative services related to differ-
ent modes of transportation and traffic management. To support the operation of various ITS
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applications, traffic congestion control is very important for urban road networks [16, 22, 25] when
trying to maximize their utilization. For example, the road management authorities hope that the
density of vehicles simultaneously passing through each road is lower than a threshold so that the
overall road network keeps operable. Also, the public transit service vehicles require their covered
routes to be non-congested so that they can follow their schedule on time. However, due to the
high mobility of vehicles and difficulty in controlling vehicle speeds, congestion control in urban
road networks is a non-trivial task.

In recent years, many methods have been proposed to reduce vehicles’ travel time by adaptively
controlling traffic signal [21, 32, 48] or suggesting optimal speeds to vehicles for different objec-
tives such as minimizing fuel consumption and travel time [5, 11, 15, 31, 38, 46]. In the former
group of methods [21, 32, 48], the controller at a road intersection properly schedules the pass-
ing of vehicles to minimize the vehicles’ total travel time caused by red lights or long queues. In
the latter group of methods [5, 11, 15, 31, 38, 46], the optimal driving speed of a vehicle is deter-
mined based on the vehicle’s real-time driving information (e.g., fuel consumption, traffic state).
However, these methods all focus on optimizing the vehicle’s driving speed on the single vehicle’s
perspective but overlook the possible road congestion generation in the future (e.g., in 5 minutes),
which may degrade the performance of achieving the objectives. In other words, these methods
cannot avoid the generation of road congestion globally in the road network in the future. By
“in the future,” we mean in a future time during a vehicle’s driving time period. For example, be-
fore “rush hours,” arterial roads may be non-congested, because most vehicles are distributed to
smaller road segments. At this moment, the methods will conclude there is no congestion ahead,
so the vehicles can drive by their optimal speeds determined upon current traffic state. However,
if legions of vehicles drive by the currently “optimal speeds” in their individual routes, they may
crowd into the arterial roads simultaneously, which results in congestion. Therefore, we need a
system to coordinate the driving speed of all the vehicles in a global manner through considering
their future movement, so that each vehicle can drive to their destination with the minimum delay,
and the road network will be free from traffic congestion.

However, designing such a system is non-trivial. The road congestion is measured by vehicle
density; a higher vehicle density increases the utilization of the road network but generates con-
gestion and decreases vehicle speed and vice versa. Therefore, it is a challenge to maximize the
utilization of the road network while proactively avoiding congestion and maximizing the vehicle
speed. In this article, we aim to tackle this challenge by proposing a vehicle Trajectory–based driv-
ing speed OPtimization strategy (TOP) that uses game theory to let vehicle drive as fast and safely
as possible and meanwhile proactively avoid generating road congestion in the future. Its basic
idea is to periodically adjust vehicles’ mobility to alleviate road congestion globally. The vehicles
report their information to a central server through road-side-units (RSUs) located alongside the
roads. The central server calculates each vehicle’s trajectory in the next time slot (denoted by Tc+1)
and determines the parameters depicting the future utilization of the road network (e.g., vehicle
density, driving time, and probability of accident). This is based on the previous observation that
vehicles’ trajectories can soundly illustrate the future mobility of the vehicles [17–19, 41, 42]. In
addition, in the estimation of the vehicles’ travel time to each position of the trajectory, we take
into account the delay caused by red traffic signals according to the changing schedule of the traffic
signals on the road network in the near future (e.g., 5 minutes). Based on the collected trajectories,
we first let the central server determine the routines for each vehicle, which are the trajectories
that a vehicle frequently drives on, for each vehicle. Then, the central server measures social close-
ness (i.e., friendship) among each pair of vehicles by calculating how many similar routines the
two vehicles share in common. Specifically, if the spatial overlap of two vehicles’ routine positions
is higher than a threshold (e.g., 60%) and the temporal deviation of the vehicles’ routine start and
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end time is less than a threshold (e.g., 5 minutes), then we view these two routines are similar. If
the similar routines take up more than some threshold (e.g., 40%) over each of the two vehicles’
total routines, then the central server views the two vehicles as friends. Finally, based on the prob-
ability of a vehicle’s presence on each position of the trajectory (determined from the estimated
travel time), we use its closeness with friends to help estimating the probability that its friends
will also simultaneously appear at the same road segment and thereby the vehicle density of the
road segment. To maximize the utilization of the road network while minimizing the probability
of road congestion, the central server formulates a non-cooperative Stackelberg game, in which
each vehicle aims at minimizing its travel time and maximizing safety while avoiding generating
congestion in the future. After the Stackelberg equilibrium is reached, when vehicles follow their
optimal speeds, it also proactively avoids generating congestion in the future. Moreover, the road
network can be fully utilized without imbalanced or high vehicle density (i.e., congestion) in road
segments. In summary, our contributions include the following:

(1) Our analysis on two real vehicle traces [4, 33] confirms the characteristics of vehicle mo-
bility, distribution of the travel time of road segments, and social closeness in terms of the
vehicles’ common routines, which lay the foundation for the design of TOP.

(2) We propose a non-cooperative Stackelberg game-based vehicle speed optimization strategy
to find the optimal speed for each vehicle that enables it to drive as fast and safely as possible,
while avoiding the generation of congestion in the future.

(3) We have conducted extensive trace-driven experiments to show the effectiveness of TOP in
maximizing the utilization of road network, avoiding congestions, and satisfying drivers’
need of driving as fast and safely as possible. Additionally, we also demonstrate the re-
spective effectiveness of considering red traffic signal delay and vehicle social closeness on
improving the driving speed of the vehicles and the vehicle flow rate of the road segments.

Within our knowledge, this work is the first to provide vehicle speed optimization that aims
at letting vehicles drive as fast and safely as possible, while proactively avoiding the generation
of road congestion in the future. The remainder of the article is organized as follows. Section 2
presents related works. Section 3 presents the trace analysis and findings that support TOP. Sec-
tion 4 presents the detailed design of TOP. Section 5 presents trace-driven experimental results.
Section 6 concludes the article and marks future directions.

2 RELATED WORK

Real-time traffic-based vehicle speed optimization. Several methods for vehicle speed op-
timization with different objectives have been proposed. Kouvelas et al. [21] proposed a hybrid
approach for traffic signal control considering the saturation status of the road. Zhao et al. [48]
proposed to utilize discrete dynamic programming (DPP) with variable optimization time step
size to reach the optimal tradeoff between precision and computational cost in vehicle driving
speed optimization. Pandit et al. [32] proposed a vehicular network-based method that collects
and aggregates real-time traffic information to optimize signal control. Tseng et al. [38] proposed
a vehicle density estimation scheme using neighbor tables communicated between vehicles. Chen
et al. [11] proposed to use vehicular ad hoc networks (VANETs) to send queries between source
and destination back and forth and select the path with the shortest time. Ozatay et al. [31] used
cloud computing [10, 34] in optimizing vehicle speed profile by solving a dynamic programming
problem. Asadi and Vahidi [5] proposed a control algorithm to enable vehicles to approach traf-
fic light at green as much as possible, thereby saving fuel and reducing travel time. Ye et al. [46]
proposed to utilize vehicle-to-infrastructure (V2I) communication and driving state information
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of vehicles to optimize the timing of traffic lights to avoid minimize the vehicles’ driving delay.
Groot et al. [15] proposed to model vehicle-congestion relationship as reverse Stackelberg games
to optimally distribute traffic over road network and meanwhile ensure that each vehicle can fin-
ish travel within its expected travel time. For the vehicles with the same origin-destination, the
central server uses different pricing of freeways (e.g., longer route has lower price) to induce these
vehicles to choose different routes to distribute the traffic. However, this method overlooks that
the vehicles with different origin-destination pairs may compete for the same road segment. Also,
it does not aim to minimize the travel time of the vehicles. As indicated previously, the above meth-
ods do not consider whether the currently suggested speed will cause congestion to certain road
segments in the future. To solve this problem, TOP first utilizes vehicles’ trajectories to extract the
parameters of future road traffic and then uses the parameters in formulating a non-cooperative
Stackelberg game that aims to let vehicles drive as fast and safely as possible and meanwhile avoid
the generation of congestion in future.

Vehicle future mobility-based routing. Many works [28, 30] focus on using vehicles’ cur-
rent or historical mobility statistics to predict the vehicles’ future mobility. Some other works [17–
19, 41, 42] found that utilizing vehicles’ GPS trajectory to deduce the vehicles’ future mobility is
reliable for data delivery in vehicular networks. Wu et al. [41] found the spatio-temporal corre-
lation in vehicle mobility and noted that the future trajectory of a vehicle is correlated with its
past trajectory. In Trajectory-based Data Forwarding Scheme (TBD) [18], Trajectory-based Sta-
tistical Forwarding Scheme (TSF) [17, 19], and Shared-Trajectory-based Data Forwarding Scheme
(STDFS) [42], trajectory information of vehicles is collected through access points and used to
predict the vehicle mobility for data forwarding. Our work is based on the observations in these
works that vehicles’ trajectories can soundly illustrate the future mobility of vehicles, which is
used to estimate road vehicle density in the future.

3 TRACE ANALYSIS

In this section, we present our trace analysis on the Rome trace [4] and the San Francisco trace [33],
which demonstrates the characteristic of vehicle mobility in urban area and provides the rationale
of the design of TOP. The details of the datasets are presented as follows.

Rome Taxi Trace. It is a 30-day Global Positioning System (GPS) coordinate record of 320 taxis
driving in the center of Rome from February 1, 2014, to March 2, 2014. In the trace, each taxi uses
an Android tablet to receive the GPS position and uploads it with the driver ID and the timestamp
to a central server every 7 seconds. To make the trace fit our analysis, we first extracted the road
intersections and turning points as landmarks and normalized the movement of the taxis to the
nearest landmarks. We also filtered out the nodes with few occurrences (<500) or low precisions
(<20 m) and merged repeated records. Finally, we obtained 315 taxis and 4,638 landmarks.

San Francisco Taxi Trace. It is also a 30-day GPS coordinate record of 536 taxi traces driv-
ing in the San Francisco Bay Area from May 17, 2008, to June 15, 2008. In the trace, each taxi is
equipped with a GPS receiver and uploads the position record of each taxi (identifier, timestamp,
geo-coordinates) with a time interval less than 10 seconds. For analysis, we also normalized the
movement of the taxis to the nearest landmarks. Each taxi has abundant records in this trace, so we
filtered out the wrong records (e.g., positions out of the actual range of San Francisco, redundant
positions). Finally, we obtained 536 taxis and 2,508 landmarks.

When a vehicle stays at one position for more than 5 minutes, we call this position an anchor

position and consider it as the ending position of the previous trajectory and the starting posi-
tion of the next trajectory. Thus, the anchor positions separate each vehicle’s trace into several
trajectories. The characteristics of the traces are summarized as in Table 1.
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Table 1. Characteristics of Taxi Mobility Traces

Rome San Francisco
Number of taxis 315 536
Number of landmarks 4,638 2,508
Duration 30 days 30 days
Number of trajectories 572,143 469,223
Number of trajectories per day 19,071 15,640

3.1 Concepts and Problem Introduction

We define a road segment (denoted by si ) as the road link between two neighboring intersec-
tions (i.e., landmarks). Vehicle density of road segment si (denoted by di ) is defined as the average
number of vehicles per meter in the road segment (veh/m), and the flow rate of road segment si

(denoted by ri ) is defined as the average number of vehicles driving through the segment per unit
time [6, 15] (veh/h). The vehicle flow rate of segment si equals to the product of vehicle density
and average vehicle speed on si (denoted by vi ) [43],

ri = di · vi . (1)

The road congestion is measured by vehicle density, and the utilization of the road network is
measure by flow rate. Therefore, to increase the utilization of the road segment si (i.e., ri ), we need
to increase vehicle density (di ) and/or vehicle speed (vi ). However, a higher vehicle density may
lead to congestion and hence lower vehicle speed. Therefore, it is a challenge to maximize the
utilization of the road network and meanwhile maximize vehicle speed, which is the objective of
this article.

3.2 Concurrent Competition for Road Usage

Previous methods locally control traffic or compute suggested speed based on current traffic state
on each vehicle’s scheduled route. If a vehicle follows the speed individually optimized for it, due to
the ignorance of other vehicles’ mobility, then some arterial roads may become crowded with many
vehicles, that is, the vehicles concurrently compete for these roads. To confirm this conjecture, we
measured the Cumulative Distribution Function (CDF) of the vehicle density and the CDF of the
flow rate on all road segments as shown in Figure 1 and Figure 2. We calculated the vehicle density
and vehicle flow rate for 30 days and draw their average values. The vehicle density and vehicle
flow rate are sampled every 30 minutes on every road segment per day. We see that for the Rome
trace, the vehicle density of 90% of the road segments is less than 0.5 veh/m, and the vehicle flow
rate of 90% of the road segments is less than 10 veh/h. But the other 10% of the road segments
have vehicle density and vehicle flow rate as high as 3 veh/m and 60 veh/h, respectively. For the
San Francisco trace, the vehicle density of 95% of the road segments is less than 3 veh/m, and the
vehicle flow rate of 95% of the road segments is less than 25 veh/h. But the other 5% of the road
segments have vehicle density and vehicle flow rate as high as 24 veh/m and 50 veh/h, respectively.
These results demonstrate that in the urban road network, vehicles usually concurrently compete
for usage on few popular roads, resulting in their excessive utilization. Therefore, we can try to
distribute traffic evenly in the road network, i.e., achieve similar vehicle density in all road segment,
to avoid the congestion and increase the utilization of the road network. The cause to repeated
congestion on arterial roads is excessive concurrent utilization of vehicles [15]. Therefore, we
further analyze vehicles’ temporal preference on driving roads.
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Fig. 1. Vehicle densities. Fig. 2. Vehicle flow rates. Fig. 3. Vehicle densities over time.

3.3 Vehicles’ Temporal Preference on Roads

If the vehicle density on a road exceeds a threshold, then the driving speed of vehicles on the
road is likely to be affected due to congestion. This is especially true for arterial roads, since they
are quite likely to be over-utilized during rush hours. To verify such intuition, we measured the
average vehicle density and average vehicle speed on the most highly utilized road segment of the
two traces (road segment 4,433 in the Rome trace and road segment 0 in the San Francisco trace)
hourly during each day in the 30 days, which are shown in Figure 3 and Figure 4, respectively.
We see that for the Rome trace, the vehicle densities during 06:00-13:00 and 17:00-20:00 are higher
than the other hours. In contrast, the average vehicle speeds during these two periods are lower
than the other hours. For the San Francisco trace, the vehicle densities during 06:00-09:00 and
18:00-22:00 are higher than the other hours. In contrast, the average vehicle speeds during these
two periods are generally lower than the other hours. These results demonstrate that excessively
high vehicle density deteriorates road driving condition, which causes reduced driving speed. The
results confirm that avoiding congestion is important to increasing driving speed and reducing
travel time, especially in rush hours.

3.4 Distribution of Travel Time of Road Segments

When a vehicle is driving on a trajectory, the accumulated travel time of the composing road
segments on the trajectory determines its position on the trajectory at a certain specific time. If
the vehicle’s travel time of the composing road segments follows some probabilistic distribution,
then we may use the distribution to estimate the probability of the vehicle’s presence on each road
segment, which can be used to estimate the vehicle density of the road segment. To support this
conjecture, we collected the historical travel time of each road segment in the Rome trace and San
Francisco trace, respectively, so each road segment has several data samples of travel time. We first
filtered out the road segments with too few samples of travel time (i.e., less than 100). Then, we
applied the One-sample Kolmogorov-Smirnov test (K-S test in short), which verifies whether the
population CDF of the data is equal to the hypothesized CDF [29] on each road segment to identify
whether the collected travel time data of each road segment follow the normal distribution with the
mean and the standard deviation of the road segment’s historical travel time data as the parameters.
If the test approves the hypothesis that the CDF of the travel time data of the road segment is similar
to the normal distribution’s CDF at the significance level (measures the reliability of this test) of
5%, then we view the data follow the normal distribution. Finally, we counted the total number
of road segments that passed the test in the Rome trace and San Francisco trace, respectively, and
calculated the test pass rate for the two traces. The test pass rate results are illustrated in Figure 5.
We can see that almost 80% of the historical travel time of the road segments in Rome and San
Francisco traces can be viewed as normally distributed.
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Fig. 4. Vehicle speeds over time. Fig. 5. Pass rate of K-S test. Fig. 6. P-values of the passed tests.

However, the test results only have a certain level of confidence to be reliable. Therefore, for
the passed tests, we further measured their p-values. The p-value is the probability that the data
samples will actually follow the target normal distribution, which measures the doubt on the test
result. Small p-values (e.g., less than 0.1 in our case) mean that even if the road segment’s travel
time data passed the K-S test, the validity of the test is in doubt [29]. The p-values of the tests
are shown in Figure 6. We can see that more than 80% and 85% of the passed tests resulted in a
p-value larger than 0.1 in Rome and San Francisco, respectively. This means most of the test results
are reliable. Therefore, the travel time of most road segments can be estimated with some normal
distribution determined based on their historical travel time data. In Section 4.2, we will explain
how we utilize the distribution of the travel time of the road segments to estimate the presence of
the vehicles on each position of their respective trajectories.

3.5 Demonstration of Similarity between Vehicle Routines

It has been confirmed that most vehicles repeat the same trajectories during certain time periods
each day [45]. Among all the trajectories that a vehicle has driven by, if the ratio of a trajectory is
higher than a threshold (e.g., 20%), we view this trajectory is a routine of the vehicle. Intuitively,
some vehicles may share common routines during certain times. For example, certain people usu-
ally take the same routine routes to commute from their home to working place at around 08:30-
09:00 every morning. In this case, we may use the similarity of the vehicle routines to deduce the
presence of certain vehicles at specific times. To verify this conjecture, we measure the similarity
between the vehicles’ routines. Since the similar routines of two vehicles will not be completely
identical, we use the spatiotemporal overlap of the routines to measure their similarity. Suppose we
have two routines: Ri of vehicleVi and R j of vehicleVj . Ri covers positions: ri = {pi (0), . . . ,pi (m)}.
Its start time range isT s

i (e.g., 08:00–08:15), and its end time range isT e
i (e.g., 09:00–09:10). R j cov-

ers positions: r j = {pj (0), . . . ,pj (m′)}. Its start time range isT s
j (e.g., 08:10–08:20), and its end time

range is T e
j (e.g., 08:50–09:15). We use T̄ s and T̄ e to denote the means of T s and T e , respectively.

Then, the spatiotemporal similarity between Ri and R j is measured as:

τt = exp
(
−max

{���T̄ e
i − T̄ e

j
���, ���T̄ s

i − T̄ s
j
���})

γs =

���ri
⋂
r j
������ri

⋃
r j
��� , (2)

where τt is the overlapping of the start times and end times of the two routines, γs is the overlap-
ping of the positions covered by the two routines.

Next, we calculated the spatial and temporal similarities of every two trajectories generated by
any pairs of two vehicles, respectively, in the two traces. We filtered out the trajectories that have
too low spatial similarity (i.e., the overlapping of routine positions is less than 0.3). The results are
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Fig. 7. Density scatter of temporal deviation w.r.t. spatial deviation.

Fig. 8. System structure.

illustrated in Figure 7 as the density distribution of the temporal similarity with respect to (w.r.t)
the spatial similarity. Each point represents a comparison result between two trajectories coming
from two different vehicles. We use color heat to demonstrate the density of the distribution of
the results. The warmer color the points have, the more concentrated these results are on their
corresponding spatial and temporal similarities. We can see that the routines with both high spa-
tial similarity (0.5) and high temporal similarity (0.4, namely time deviation is less than 1 minute),
which means the two vehicles having these routines are likely to simultaneously appear on cer-
tain road segments, take up a small portion within the square circle. This motivates us to properly
measure the vehicles’ social closeness (i.e., friendship in terms of the spatial and temporal similar-
ities of their routines) between each other. Then, given the presence of a vehicle, we can use the
friendship to estimate the probability of its friends’ presence on the same road segment. Based on
the presence probability of the vehicles, we can further estimate the vehicle density for each road
segment. We will introduce the details of the determination of the friendship among the vehicles
in Section 4.2.1.

4 SYSTEM DESIGN

4.1 Overview

ITSs support the installation of RSUs alongside road segments to provide communication between
vehicles and the central server [12, 17, 26]. As shown in Figure 8, we establish a three-layer infor-
mation collection and dissemination framework, which consists of vehicles as the service layer,
RSUs as the communication backbone and a central server as the computation layer. Each vehicle
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contacts the central server through RSUs. As in the traffic management papers in Reference [8], we
consider road segments have equal vehicle density limits. In this article, we focus on optimizing the
vehicles’ speed on their original route. We leave the optimal route selection as future incremental
work. To let vehicles drive as fast and safely as possible while avoiding generating congestion on
the road network, we use the Stackelberg game [36] between the vehicles and the central server
to determine the expected vehicle density that maximizes the utilization of the road network and
optimal driving speed for each vehicle. The gaming process is executed periodically with period T
(e.g., 5 minutes). Note that the value setting of the period determines the tradeoff between traffic
optimization timeliness and computation overhead. If the period is relatively larger, then the gam-
ing process will be executed less frequently but reduces more computation pressure on the central
server, and vice versa. Thus, the value of the period should be set manually according to different
city road networks’ requirement on traffic optimization timeliness and computation overhead. The
gaming process can be summarized as follows:

(1) Through a nearby RSU, the vehicle reports its current position and intended destination to
the central server.

(2) Based on the information collected from vehicles, the central server calculates the trajectory
of each vehicle in Tc+1 and predicts the vehicle density in each road segment at the next time
slot. Then, a gaming process is conducted between the central server and each vehicle.

(3) Based on the predicted average vehicle density per road segment in the road network in
Tc+1, the central server determines a set of expected average densities that are achievable
by vehicle speed adjustment.

(4) Based on each expected average density, each vehicle determines its speed that maximizes
its utility (speed and safety) and reports the speed to the central server.

(5) The central server determines the final expected average density that maximizes its utility
(maximizing flow rate of the road network) and notifies all vehicles.

(6) Each vehicle chooses its speed corresponding to the final expected average density.

With the optimal speeds, the vehicle density of each road segment will be approximately the
determined vehicle density. Thus, the total traffic in the road network is well balanced with no
congestion and its utilization is maximized. We will first explain how the central server predicts the
vehicle density of road segments (Section 4.2) and then present the non-cooperative Stackelberg
gaming (Section 4.3).

4.2 Future Road Vehicle Density Prediction

The gaming process runs after each time slot T (e.g., 5 minutes). For example, when the central
server starts the game at 00:00, it needs to estimate the vehicle density of each road segment in
[00:00, 00:05] to determine an achievable vehicle density in the entire road network for vehicles to
choose their optimal speeds.

In this section, we present how to estimate the vehicle density of each road segment in Tc+1

with current vehicle speeds. First, the central server needs to determine each vehicle’s trajectory
in Tc+1. It consists of the road segments it will pass in Tc+1 and their corresponding travel times

{(si , T̃i ) |i = 1, 2, . . . ,M }, where si denotes the ith road segment, T̃i denotes the estimated travel
time from current position to si and M denotes the number of road segments that the vehicle will
pass in Tc+1.

Then, by modeling the arrival times as normal random variables, TOP sums up the vehicles’
probabilities of appearance on each road segment as its vehicle density at the next time slot. The
average vehicle density per road segment will be used in the driving speed optimization gaming
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Table 2. Table of Friends

Vehicle ID Friends

V1 V2 (0.5),V3 (0.3),V4 (0.2),V5 (0.1)
V2 V1 (0.4),V2 (0.2)
V3 V8 (0.6),V10(0.2),V15(0.1)
... ...

presented in Section 4.3. After each vehicle determines its speed in gaming, the vehicle density
will be updated and used for the next gaming process.

4.2.1 Measuring Friendship among Vehicles. In Section 3.5, we have defined the routines of a
vehicle as certain trajectories it frequently drives on at specific times. In Figure 7, we also demon-
strated that some vehicles are likely to simultaneously drive on the same road segment during
specific time periods. Given two routines, say, Ri of vehicleVi and R j of vehicleVj , their similarity
is measured by Equation (2). To identify whether Ri and R j are similar, we first determine whether
they overlap enough with each other in spatial positions. Specifically, we will further consider the
two routines’ temporal similarity only if their spatial similarity γs � 0.6, namely they have more
than 60% of spatial positions in common. Then we determine whether their temporal similarity
is high enough. For metropolitan cities, relatively high temporal deviation should be tolerated.
Therefore, we use a temporal similarity threshold of τt � 0.0067 (i.e., maximum difference in the
starting time and ending time is less than 5 minutes) for identifying temporal similarity. Finally, the
principle for determining the similarity between the routines of two vehicles can be represented
as follows: For Ri and R j whose spatial similarity is greater than 0.6, if the maximum difference in
the start time and end time of Ri and R j is no more than 5 minutes, we view the two routines are
spatiotemporally similar to each other.

Next, we specify how to determine the friendship among two vehicles in terms of the ratios of
their similar routines over the total routines of each vehicle. We define two vehicles are friends
if for each vehicle, the ratio of the two vehicles’ similar routines over the vehicle’s total routines
(i.e., closeness ratio β) is higher than a threshold, say, βth . For example, suppose vehicle Vi has
routines: R1

i and R2
i in total, vehicleVj has routine: R1

j , and the closeness ratio threshold βth is 0.4.

Suppose R1
i of Vi and R1

j of Vj are similar. Thus R1
i takes up β1

i = 50% of Vi ’s total routines, and

R1
j takes up β1

j =100% of Vj ’s total routines. Since both β1
i and β1

j are higher than the threshold

βth = 0.4, we conclude these two vehicles are friends. In TOP, routine extraction and friendship
determination are conducted by the central server with a relatively long period (e.g., 3 months)
and maintained in a table as shown in Table 2. Note that each friend is denoted with a closeness
ratio (i.e., β), respectively.

If Vi and Vj have lots of routines in common, then it means that the two vehicles are likely to
simultaneously drive on the same road segments at specific times. Therefore, given the presence
of one vehicle, its friendship may offer us some hint on where its friends will possibly be, which
can be an auxiliary method for estimating vehicle density. For example, suppose Alice and Bob
live in the same suburban community, every morning they drive through the same highway to
downtown. Given Alice is on a certain road segment at 08:30, Bob has certain probability to be on
the same road segment at that time. Based on such observation, we take into account the friendship
among vehicles in the estimation of vehicle density on the road segments, which will be elaborated
in Section 4.2.4.

4.2.2 Trajectory Calculation. A vehicle periodically reports its current position and its desti-
nation to the central server. To generate the vehicle’s trajectory in Tc+1, the central server first

ACM Transactions on Cyber-Physical Systems, Vol. 4, No. 2, Article 17. Publication date: November 2019.



TOP: Optimizing Vehicle Driving Speed for Road Congestion Avoidance 17:11

determines the sequence of road segments connecting the current position and the destination
based on road topology [40]. It then calculates the travel time of each road segment that will be
passed in Tc+1 by the vehicle. After a gaming process, a vehicle’s optimal speed on si is determined,
denoted by vi . Then, for each road segment si , the estimated travel time on si (denoted by t̃i ) can
be calculated by

t̃i = li/vi , (3)

where li is the length of si . A problem is how to estimate the travel time of si initially when no
game has been played. To handle this problem, we use the current vehicle density of the road seg-
ment to estimate the speed for the vehicle as in traditional vehicle density-based speed estimation
methods [43]. It has been indicated that for a road segment si , its reachable speed is related to a
vehicle density limit dm

i . When the vehicle density is below dm
i , vehicles on the road segment can

drive with the free flow speed (i.e., speed limit, denoted byvmax
i ). If the vehicle density exceedsdm

i ,
then the road segment will be congested and the vehicles have to drive with the congested speed

(denoted by vmin
i ). d jam

i is the vehicle density that will cause si to be completely jammed. dm
i can

be obtained from field observation, and d jam
i can be obtained from the road network’s designed

capacity [43]. Currently, the vehicle density of each road segment can be well monitored [14, 16,
20, 35, 37]. Then, we can roughly estimate the allowed vehicle speed under current vehicle density
for each road segment as below:

t̃i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
li/v

max
i , 0 � di < dm

i

li/v
min
i , dm

i � di < d jam
i

∞, di � d jam
i

. (4)

The trajectories generated by GPS do not consider the road congestion condition and hence may
not be sufficiently accurate. In contrast, TOP calculates the trajectories of vehicles considering
future road congestion.

4.2.3 Travel Time Estimation Considering Traffic Signal. On the one hand, according to previous
works of road segment travel time modeling [23, 24], the travel time of a road segment can be
described by normally distributed and statistically independent random variables with acceptable
precision. But from the K-S tests in Section 3.4, we also notice that the travel time of some road
segments cannot be modeled with normal distribution. For these road segments, we apply Kernel
Density Estimator (KDE) [47] to learn the Probability Density Function (PDF) and use the PDF to
estimate the vehicles’ travel time on the road segment. In Section 3.4, we have also shown that the
distribution of the travel time of the road segments can be described with the normal distribution
with the mean and the standard deviation of the travel time data as parameters. Therefore, the
estimated travel time from the vehicle’s current position to some road segment si is the sum of
the respective travel times of the composing road segments from current position to si , namely

T̃i =
∑Mi

m=1 t̃m , where Mi is the number of road segments from the vehicle’s current position to si .

When T̃i ≥ T , the trajectory for Tc+1 has been generated. Based on the historical records of the
travel time of sm and real travel time on sm of all vehicles, the central server can calculate the
variance of each road segment σ 2

m . Then, the standard deviation of T̃i is calculated by summing

the variances of the composing road segments, Δ2
i =
∑Mi

m=1 σ
2
m .

However, when driving through the road segments, the vehicle may be intermittently blocked by
red traffic signals. Thus, when estimating the travel time of a trajectory, we also need to consider
the possible waiting time caused by traffic signals on the way. With the estimated travel time
of respective road segments and current time, we can deduce the vehicle’s arrival time at each
intersection. For example, in Figure 9, given the starting time (ts ) at the vehicle’s current position,
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Fig. 9. Travel time considering traffic signal.

Table 3. Table of Traffic Signal Time Sequence

Traffic signal ID 00:00:01 00:00:02 00:00:03 00:00:04 ...
S1 r g g g ...
S2 r r r g ...
S3 g g g g ...

...

the vehicle will arrive at the intersection at around ts + t̃1. The changing schedule of the traffic
signals, which is as shown in Table 3, is extracted from the real traffic signal schedule trace of
Rome and San Francisco [4, 33]. In this table, “r” represents the red signal, and “g” represents
the green signal. At the intersection, by referring to the traffic signal table, we estimate that the
vehicle will encounter a red traffic signal, which blocks it for a duration of t̃d . Thus, in addition to
the travel time of the composing road segments, the delay caused by traffic signals should also be
considered if we want to estimate where the vehicle will be in the near future. In the next section,
we will introduce how we utilize the estimated positions of the vehicles to calculate road vehicle
density in the near future.

4.2.4 Road Vehicle Density Calculation. The estimated travel time in {(si , T̃i ) |i = 1, 2, . . . ,M }
only has a certain probability to be accurate. Then, we have two steps to calculate the vehi-
cle density of each road segment in Tc+1. First, we use a vehicle’s trajectory in Tc+1 to estimate
the probability that the vehicle will appear at each road segment in its trajectory in Tc+1. Then,
we calculate the sum of all the vehicles’ appearance probabilities at a road segment in Tc+1 as the
vehicle density of the road segment in Tc+1.

Suppose the next time slot is the jth time slot in a day, represented by Tc+1 = [ts
j , t

e
j ] (e.g., [00:00,

00:05]), where ts
j and te

j are the starting time and ending time of the time slot, respectively. Within

the short time interval of Tc+1, the total delay caused by the traffic signals on the trajectory of each
vehicle (T d

i ) can be viewed as a constant [22]. Thus, the sum of the travel time of the composing

road segments and the traffic signal delay still follows normal distribution with a mean of T̃i +T
d
i

and a variance of Δ2
i . For each vehicle, TOP uses its estimated travel time to si to measure its

appearance probability at si during [ts
j , t

e
j ]. Therefore, the vehicle’s appearance probability at si

during [ts
j , t

e
j ] is

P
(
Ti �te

j − ts
j

)
= Φ 
�

�
te

j − ts
j − T̃i −T d

i

Δi


�
� − Φ 


�
−T̃i −T d

i

Δi



� , (5)

where Ti denotes the vehicle’s actual travel time from current position to si , and Φ(·) is the CDF

of the standard normal distribution with mean T̃i and standard deviation Δi . The CDF for each
vehicle on each road segment si is calculated based on the historical records of all vehicles’ travel
times on the road segment. Then, for each road segment si , the central server estimates its vehicle
density in Tc+1 by summing up the appearance probabilities of vehicles (Pk ) on si during Tc+1:
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Table 4. Table of Accident Probability of

Road Segment College Ave

Time Accident probability

00:00∼00:05 0.05
00:05∼00:10 0.02

... ...

dsi

c+1 =

N∑

k=1

Pk

(
Ti � te

j − ts
j

)
+

FN∑

f =1

max
{
β1

f , . . . , β
N
f

}
Pf

(
Ti � te

j − ts
j

)
, (6)

where N is the number of vehicles that will pass si during [ts
j , t

e
j ]. FN is the total number of friends

of the N vehicles. Since the N vehicles may have overlap in friendship, we use max{β1
f
, . . . , βN

f
},

which is the maximum social closeness ratio of the f th friend vehicle among the N vehicles, as the
weight of the f th friend vehicle. Pf (Ti � te

j − ts
j ) is the f th friend vehicle’s appearance probability

at si during [ts
j , t

e
j ]. For example, given current time 00:00, the estimated vehicle density of College

Ave for Tc+1, namely 00:00–00:05, is 26.16 vehicles per meter.

4.2.5 Safety Estimation. Each road segment has a probability of accident occurrence. The prob-
ability depends on the structure feature of the road segment (e.g., the degree of straightness, sharp
turn, road surface bump) and the traffic condition. It has been verified that traffic conditions (e.g.,
heavy traffic volume, speeding) affect the likelihood of accident occurrence [3]. The traffic con-
dition of a road segment has a long-term pattern, that is, the vehicle flow rate at each time slot
remains similar irrespective of days. For example, people are likely to encounter congestion on
their way to work during morning rush hours every workday.

TOP relies on historical records of accidents to depict the likelihood of accident for each road
segment in each time interval in a day [27, 44]. Considering that the probability of accident is time-
varying (e.g., some road segments are more likely to have accidents in Winter than in Spring), TOP

uses a time window to control the number of days for consideration. The larger the window size
is, the more accident events that can be captured. Specifically, from the historical records, we
can know that during the jth time interval of the wth day, the time duration that road segment
si is affected by accident is Tw

j . Thus, given the total number of days for consideration W (i.e.,

time window size), the cumulative time duration that si is affected during the jth time interval by
accident is

∑W
w=1T

w
j . Moreover, the total time duration covered by this window size isW (te

j − ts
j ),

where [ts
j , t

e
j ] is the start and end time of the jth time interval. Finally, the accident probability of

si during the jth time interval of theW days is calculated as the cumulative time duration that si

is affected during the jth time interval (i.e.,
∑W

w=1T
w
j ) over the total time duration covered by this

window size (i.e.,W (te
j − ts

j )):

p j
i =

∑W
w=1T

w
j

W (te
j − ts

j )
(7)

where p j
i is the accident probability of si during the jth time interval. For example, we found that

during the time slot [00:00, 00:05] in 3 days, the time durations that a road segment is affected
by accident are 3 minutes, 0 minutes, and 5 minutes. Thus, based on the 3-day-long time win-
dow, the accident probability of the road segment is calculated as 3+0+5

3∗5 = 0.53. Finally, for each
road segment, the central server generates a table summarizing accident probability during each
time interval, as shown in Table 4. Since higher vehicle density leads to shorter distance between
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vehicles, which renders higher risks of accident, we relate p j
i with vehicle density in determining

the utility of drivers in gaming in Section 4.3.

4.3 Driving Speed Optimization Gaming

4.3.1 Overview. On one hand, traveling quickly (i.e., short driving time and no congestion) and
safely (i.e., no accident) is desired by drivers. On the other hand, the transportation authority
hopes to maximize the utilization of the road network (i.e., maximum vehicle flow rate). Based on
Equation (1), to increase road network utilization, we need to increase the vehicle density, which
however may lead to road congestion. Then, the vehicle speed drops down and results in low flow
rate and hence low utilization of the road network.

It is found that drivers may drive slower given a higher specified vehicle density to keep a
safe inter-vehicle distance to keep safety, especially for the drivers with high probability of acci-
dents [3]. Therefore, the drivers will adjust speeds in response to a given vehicle density. Thus, we
can formulate the speed optimization as a non-cooperative Stackelberg game [9, 15] between the
central server and the drivers, where the central server is the leader and the drivers are followers.

In the Stackelberg game, the leader considers the predicted average vehicle density of a road
segment (introduced in Section 4.2.4), and then chooses a set of expected vehicle densities (de-
noted by D = {d1,d2, . . . ,dn }) that are achievable by vehicle speed adjustment. The central server
hopes to evenly distribute the vehicles over all road segments by properly assigning a d value. The
followers receive D from the leader and picks a speed in response to each di to maximize its own
utility (driving as fast and safely as possible while minimizing the risk of congestion). Next, the
central server selects the vehicle density that maximizes its utility (i.e., vehicle flow rate of the road
network), denoted by dl and then the vehicles choose their speeds corresponding to the selected
dl . Finally, we solve the Stackelberg equilibrium of the game, i.e., the game reaches a state that
the road network utilization is maximized while the drivers are satisfied with the driving status
(judged by driving speed and associated risk of congestion). The gaming is executed periodically.
In the following, we first introduce the utility of a driver and the utility of the central server, and
then introduce the gaming between them.

4.3.2 Utility Function of Drivers. For drivers, we define a utility function to quantify the level
of benefit that a driver obtains from driving by a speed on road segment si . It is calculated by
subtracting the potential risk of congestion (Ur (·)) from a vehicle’s satisfaction degree (Us (·)), as
shown in Equation (9),

F
(
vi ,αi ,p

j
i

)
= Us

(
vi ,αi ,p

j
i

)
−Ur

(
d,vi ,p

j
i

)
(8)

s.t. vi � vmax
i ,

where vi is the vehicle’s speed for optimization; αi is a scale factor to make Us (·) and Ur (·) com-

parable; p j
i is calculated by Equation (7).

Us (·) ought to be non-decreasing as each driver desires high speed (i.e., short driving time).
Meanwhile, the marginal satisfaction degree of the driver is non-increasing, because the driver’s
satisfaction degree gradually gets saturated when the vehicle speed increases to some level [43].
Moreover,Us (·) is inversely related with the probability of accident, because a lower possibility of
accident corresponds to higher level of satisfaction [13]. Considering these properties, we design
Us (·) as a concave function. Since the Natural Logarithmic Functions are representative concave
functions [7], we define

Us

(
vi ,αi ,p

j
i

)
= αi · ln

(
vi + p

j
i

−1)
. (9)
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A driver’s potential risk of congestion is determined by the accident probability of the road

segment (p j
i ) and vehicle flow rate [3] (Equation (1)),

Ur

(
d,vi ,p

j
i

)
= p j

idvi . (10)

The utility of a driver decreases with a higher vehicle density and vice versa. Combining Equa-
tion (9) and Equation (10) into Equation (9), we have the following:

F
(
vi ,αi ,p

j
i

)
= αi · ln

(
vi + p

j
i

−1) − p j
idvi (11)

s.t. vi � vmax
i .

Note the gaming is executed periodically, so it is possible that a vehicle may enter other road
segments during the current time slot. We use γi to denote the percentage of T that the vehicle
will spend on segment si . Then, the utility of the vehicle is calculated by∑

i

γiF
(
vi ,αi ,p

j
i

)
(12)

s.t. vi � vmax
i .

4.3.3 Utility Function of Central Server. The central server always aims at maximizing the ve-
hicle flow rate on overall road network:

L(d ) =
Ns∑

i=1

di · vi , (13)

where Ns is the total number of road segments.

4.3.4 Optimal Driving Speed Selection. Recall that based on Equation (6), the central server
predicts the vehicle densities of all road segments. It then calculates the average estimated vehicle

density of the road network during next period of gaming: dc+1 =
∑Ns

k=1
dsk

c+1/Ns . Based on dc+1,
the central server determines a range of expected vehicle densities that are achievable by vehicle
speed adjustment and offers these densities to each vehicle for selection, which is defined as

du = ln(u + 1) · dc+1, u ∈ [1, . . . ,n]. (14)

We have designed Equation (14) using a natural logarithm as they are slowly varying functions
with respect to variable changes. This means that the central server prefers the drivers to select

the vehicle density approximate to the dc+1. Arranging the density selections with a logarithm
can more quickly enable the vehicles to select their respective driving speeds that can achieve

the expected average vehicle density dc+1 or a similar value during the gaming process. We use
D = {d1,d2, . . . ,dn } to denote the n levels of expected vehicle densities for Tc+1. The reason for

providing n levels of expected vehicle densities for selection is that the dc+1 provided by the cen-
tral server may not be applicable for every vehicle all over the road network, and needs to be
relaxed for general vehicles. In practice, n should be at least larger than the exponent so that

the vehicle has multiple selections around dc+1. The central server notifies drivers of the D. If dc+1

leads to an increased expected vehicle density (du ), then the drivers will be encouraged to decrease
driving speed to drive safely. Otherwise, the drivers will be encouraged to increase driving speed
to increase benefit while maintaining driving safety. Note the increment rate of Us (·) (Natural
Logarithmic Function) is slower than Ur (·) (Linear Function) when speed vi increases. Therefore,
according to Equation (9), increasing driving speed on current road segment (vi ) over the optimal
expected driving speed will reduce a driver’s utility, because Ur (·) will increase faster than Us (·).
Thus, driving at a slower speed can prevent the vehicle density of the road network from further
increasing, i.e., prevent traffic congestion.
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For each du ∈ D, if a driver will drive in its current road segment si during the next time slot, it
chooses a new speed that maximizes its utility F (·), denoted by viu , as shown in Equation (15),

viu = arg max
vi �vmax

i

F
(
vi ,αi ,p

j
i

)
. (15)

If a driver will drive through more than one road segment si , sj , . . . , then it chooses a set of
speeds in each of the segments to maximize its utility F (·), denoted by {viu ,vju , . . .} as shown in
Equation (16),

{viu ,vju , . . .} = arg max
vk �vmax

k

∑

k

γkF
(
vk ,αk ,p

j

k

)
. (16)

Finally, the driver reports the n candidate speeds to the central server. The central server finalizes
the expected vehicle density (dl ) that maximizes its utility L(·) based on the candidate speeds from
all drivers,

dl = arg max
du ∈D

L(du ) = arg max
du ∈D

du

∑

Ns

viu . (17)

Since each vehicle’s local driving state may have changed at the time when dl is finalized, we
let each vehicle finalize its driving speed based on its driving status in a distributed manner to
avoid excessive information exchange on the negotiation between each vehicle’s respective driving
speed and the central server [39]. Specifically, the central server then notifies all drivers of the
new expected vehicle density dl . Then, among the n candidate speeds, each driver picks the speed
corresponding to dl .

5 PERFORMANCE EVALUATION

5.1 Experimental Settings

We conducted trace-driven experiments based on the Rome [4] and the San Francisco [33] traces
introduced in Section 3. Unless otherwise specified, the experiment settings are the same as those
in Section 3. The number of accidents occurred in Rome and San Francisco in each month are
obtained from Reference [1] and Reference [2], respectively. The window sizeW was set to 7 days
and Tw

j =1 hour. The scale factor αi was set to 2.85 for Rome and 5 for San Francisco. The social

closeness ratio threshold βth is 0.4 in both Rome and San Francisco. We measure a driver’s satisfac-

tion degree when (s)he drives on road segment si with speed vi by ln(vi + p
j
i

−1
)/ ln(vmax

i + p j
i

−1
)

(deduced from Equation (9)). The gaming procedures are launched every 15 minutes in the two
traces. To simulate that vehicles drive by their optimal speeds, we dynamically update the times-
tamps of arrivals at landmarks according to the vehicles’ optimal speeds. Therefore, in the ex-
periment, the vehicles follow the movement paths recorded in the traces but with modified
timestamps.

We compared TOP with a representative traffic signal control method [32] (Signal in short) and
a representative vehicle speed optimization method [31] (RealSpeed in short). Signal also focuses
on optimizing the driving speed of the vehicles but via the control of traffic signals. It uses VANETs
to formulate vehicles into platoons. The controller at each intersection uses the oldest-arrival-first
scheduling algorithm to arrange the passing of platoons so that the vehicles’ total travel time is
minimized. RealSpeed tries to optimize the driving speed of vehicles by considering the current traf-
fic on each vehicle’s driving route. By aiming at reducing fuel consumption and satisfying driver
with reduced travel time, the vehicle speed is optimized by dynamic programming constrained by
speed limit, real-time traffic, and driver’s destination. To make RealSpeed comparable to the other
methods, we excluded its fuel consumption constraint in our experiments. Signal and RealSpeed
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Fig. 10. Speed optimization performance for vehicles over time.

cannot proactively avoid the generation of road congestion in the future. To demonstrate the effec-
tiveness of considering the friendship among the vehicles and the delay caused by traffic signals
on increasing the accuracy of vehicle density on the road segments, we extend TOP with the two
advanced components in the experiment, which is named as TOP-Advanced. We also measured
the performance improvement brought by these two components, respectively. Each experiment
is for 30 days. In each hour throughout each day, we measured the following metrics and report
the average value in each hour for the 30 days.

• Average vehicle speed: The average speed of all the vehicles determined by the games during
an hour.

• Average flow rate: After each game, we calculate the flow rate per road segment by
∑Ns

i=1 di ·
vi/Ns . Then, we calculate the average flow rate per road segment in all the games during
an hour.

• Average driving time: The average driving time on each road segment for all the travels on
segments during an hour.

• Average driver satisfaction: The average satisfaction degree of the drivers after travels per
hour.

• Runtime of optimization processes: The CDF of the runtime of all the optimization processes.

5.2 Experimental Results

5.2.1 Average Vehicle Speed. Figure 10(a) and Figure 10(b) show the average speed of vehicles
during different time intervals with the Rome and San Francisco traces, respectively. We see that
for Rome, the average vehicle speeds follow TOP-Advanced>TOP>RealSpeed>Signal. While for San
Francisco, the average vehicle speeds follow: TOP-Advanced>TOP>Signal>RealSpeed.

TOP always has much higher average vehicle speed than others in both traces. Before optimiza-
tion, the future traffic on the scheduled route has been deduced by the central server from the
vehicle trajectories. Although the results might have deviation from the true results, they are still
effective in predicting the future movement of vehicles. With gaming using the predicted vehicle
density, TOP enables the central server to maximally avoid road congestion caused by confluent
vehicle flows. Meanwhile, each vehicle can drive by a speed as fast and safely as possible. As a
result, TOP generates the highest average speed of vehicles. Both RealSpeed and Signal do not
proactively avoid generating congestions in the future and congestions decrease vehicle speeds,
thus producing lower average speed of vehicles.

RealSpeed has the secondary performance in Rome, but the lowest performance in San Fran-
cisco. In RealSpeed, for a vehicle, the server generates a route based on the collected information of
the intended travel. Then, the server collects the associated traffic and geographical information,
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Fig. 11. Vehicle flow rate optimization performance for road segments over time.

and calculates optimal vehicle speed aiming at reducing travel time through dynamic program-
ming. However, since San Francisco has many uniformly distributed road segments with short
lengths [33], the vehicle flow on the vehicle’s scheduled route can be easily congested by vehicle
flows from other intersected road segments. In contrast, the road segments in Rome have fewer
intersections [4]. Therefore, the vehicle traffic in the road network is less likely to be congested
than that in San Francisco.

Signal has the lowest average vehicle speed in Rome, but the second lowest performance in San
Francisco. This is because Signal aims at reducing vehicles’ travel time near intersections rather
than in the global road network. In Signal, the vehicle flows on the road network are partitioned
into several platoons of vehicles. By viewing each platoon as a job, the traffic management problem
is formulated as a job scheduling problem at intersections. To minimize the time of vehicles passing
the intersection, Signal utilizes the oldest-arrival-first scheduling algorithm. However, Rome’s road
segments are quite crowded at popular sites and have short distance [4], which make streets near
popular sites heavily utilized. Locally minimizing the time at certain intersections inevitably exac-
erbates congestion at the other intersections. Therefore, Signal cannot achieve an optimal solution
in the whole road network in Rome. In contrast, the road segment distribution of San Francisco
is more uniform than that in Rome [33]. Therefore, Signal can better schedule vehicles passing
through the intersections in San Francisco than in Rome, resulting in the better performance of
Signal in San Francisco.

In TOP-Advanced, on the one hand, with the analysis result of the friendship among the vehi-
cles, we can better estimate the probability of certain vehicles’ presence on some road segments.
Therefore, the vehicle densities on the road segments are more accurately estimated, which pre-
vents much congestion from being generated in advance and meanwhile provides the optimal
driving speed for the vehicles. However, by taking the delay caused by the traffic signals into ac-
count, the vehicles’ arrival time on the positions of their trajectories are also more accurate, which
further increases the accuracy of vehicle density estimation. Thus, the vehicles can drive with a
relatively faster speed compared with the other methods and don’t suffer from congestion.

5.2.2 Average Flow Rate. Figure 11(a) and Figure 11(b) show the average flow rate during differ-
ent time intervals with the Rome and San Francisco traces, respectively. We see that for Rome, the
average vehicle flow rates follow TOP-Advanced>TOP>RealSpeed>Signal. While for San Francisco,
the results follow TOP-Advanced>TOP>Signal>RealSpeed.

The average vehicle flow rates follow the same trend as that of the average vehicle speed. Higher
speed means that the vehicle flow can move faster on road segment as long as the vehicle density
does not result in congestion. Although some road segments may be too crowded to let vehicles
maintain high speeds, their flow rate is still large as long as their vehicle density does not exceed
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Fig. 12. Driving delay optimization performance for vehicles over time.

the jam level. Through comparing Figure 10(a) with Figure 11(a) and Figure 10(b) with Figure 11(b),
respectively, we can see that although the average speed keeps above 15 km/h, the vehicle flow
rate can be as low as 1 vehicle per hour. This shows that when the road network is non-congested,
the vehicles in Signal and RealSpeed can drive as fast as possible (i.e., speed limit), which results
in acceptable average driving speed. While without proactively avoiding congestion, the vehicle
flows may generate congestion. As for TOP-Advanced, since the friendship among the vehicles
helps increasing the accuracy of the estimated vehicle density on the road segments, the gaming
process can more effectively avoid the generation of future road congestion. So the vehicles can
drive with a high speed allowed by the road network in the near future. Meanwhile, since TOP-

Advanced also considers the possible delay caused by traffic signals, the vehicle density on the road
segments can be estimated in advance. As a result, the vehicles are constantly driving on the road
segments with certain density, but no congestion. Therefore, the flow rate of TOP-Advanced is the
highest among all the methods.

5.2.3 Average Driving Time. Figure 12(a) and Figure 12(b) show the average driving time during
different time intervals with the Rome and San Francisco traces, respectively. We can see that for
Rome, the average vehicle driving time follows Signal>RealSpeed>TOP≈TOP-Advanced. While for
San Francisco, the average vehicle driving time follows RealSpeed>Signal>TOP>TOP-Advanced.

TOP always has the lowest driving time, because each vehicle can drive by a fast speed with
low probability of suffering from congestion. Signal has the highest driving time in Rome, and the
second highest driving time in San Francisco. Correspondingly, RealSpeed has the second highest
driving time in Rome, and the highest driving time in San Francisco. These results are consistent
with those of the average vehicle speed due to the same reasons. It is noticeable that in San Fran-
cisco, there is a heap between 0th hour and 1st hour. This is because there is a drop of speed during
this time interval. When multiple vehicles simultaneously enter an intersection, but traffic signals
cannot schedule their passing in time, the vehicles then wait in queues at the intersection. In TOP-

Advanced, with considering the friendship among the vehicles and the possible delays caused by
the traffic signals, the vehicles drive faster with higher densities on the road segments than the
other methods, which results in shorter average driving time for all the road segments. But the
improvement of the average driving time of the road segments in Rome is smaller than that in San
Francisco. This is because the improvement of average driving speed in Rome is less than that in
San Francisco, and Rome has longer average length of the road segments.

Recall

5.2.4 Average Driver Satisfaction. Figure 13(a) and Figure 13(b) show the average driver satis-
faction during different time intervals with the Rome and San Francisco traces, respectively. We
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Fig. 13. Satisfaction of drivers over time.

Fig. 14. Runtime of optimization processes.

can see that for Rome, the average satisfaction follows TOP>RealSpeed>Signal. While for San Fran-
cisco, the average satisfaction follows TOP>Signal>RealSpeed.

Driver satisfaction is jointly determined by vehicle speed and accident probability. Since the ac-
cident probability is calculated offline and does not change during vehicles’ movement, drivers’ sat-
isfaction is solely determined by the vehicle speed. Since TOP generates the highest vehicle speed,
it always ranks the highest and achieves over 80% satisfaction in both traces. In TOP-Advanced,
since the vehicles’ average driving speed is increased compared to TOP, it achieves the highest
driver satisfaction. The satisfaction results are consistent with the average vehicle speed results
due to the same reasons.

5.2.5 Runtime of Optimization Processes. Figure 14(a) and Figure 14(b) show the CDF of the
runtime of all the optimization processes under different methods with the Rome and San Fran-
cisco traces, respectively. We can see that for both traces, the results generally follow TOP-

Advanced>TOP>RealSpeed>Signal.
Since in Signal, each time when a vehicle passes an intersection with traffic signal, the central

server applies the oldest-arrival-first scheduling algorithm to locally minimize the vehicle’s travel-
ing time on its route, it has the shortest runtime delay. In TOP, the vehicles exchange driving status
information with the central server for three rounds in each gaming process. Therefore, under the
same optimization period, it has higher runtime delays than RealSpeed. Since TOP-Advanced needs
to further consider traffic signal and vehicle friendship for estimating vehicle density, it results
in the highest runtime delay. However, considering that TOP generates a better vehicle flow rate
optimization performance, the overhead is worthwhile.
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5.3 Effectiveness of Each Enhancement Method

In this section, we test on the effectiveness of considering friendship among vehicles and traffic sig-
nal delay in improving vehicle density estimation and gaming efficiency (i.e., vehicle driving speed,
road segment flow rate) with and without using the components. Specifically, in Section 5.3.1, we
evaluate the performance of TOP-Advanced with and without considering the friendship among
vehicles, respectively. In Section 5.3.2, we evaluate the performance of TOP-Advanced with and
without considering traffic signal delays, respectively. In each of the following figures, the top
figure is for Rome and the bottom figure is for San Francisco.

5.3.1 Friendship among Vehicles. To verify the effectiveness of considering the friendship
among vehicles, we measured the CDF of the average driving speed of all the vehicles with and
without utilizing the vehicles’ friendship in gaming, respectively, which is shown in Figure 15.
For Rome, we can see that about 50% of the vehicles have average driving speed higher than
45 km/h without considering vehicle friendship, and 70% of the vehicles have average driving
speed higher than 45 km/h with considering vehicle friendship. We also note that with considering
vehicle friendship, the fastest average driving speed that the vehicles can reach is around 60 km/h,
while the one for the vehicles without considering vehicle friendship is only around 50 km/h.
For San Francisco, we can see that about 50% of the vehicles have average driving speed higher
than 20 km/h without considering vehicle friendship, and almost 90% of the vehicles have average
driving speed higher than 20 km/h with considering vehicle friendship. With considering vehicle
friendship, a small portion of the vehicles (i.e., less than 10%) can reach the average driving speed as
high as around 90 km/h. Without considering vehicle friendship, the highest average driving speed
the vehicles can reach is only around 50 km/h. This is because the vehicles’ friendship offers hint
on the presence probability of the vehicles on certain road segments, which improves the accuracy
of the estimated vehicle density on the road segments. Then the gaming process driven by the im-
proved estimation of the vehicle traffic can let the vehicles drive faster without facing congestion.

We also further measured the vehicle flow rate of the road segments, which is as shown in Fig-
ure 16. For Rome, about 50% of the road segments have vehicle flow rate higher than 50 veh/h
without considering vehicle friendship, and around 90% of the road segments have vehicle flow
rate higher than 50 veh/h with considering vehicle friendship. For San Francisco, about 50% of the
road segments have vehicle flow rate higher than 40 veh/h without considering vehicle friendship,
and around 70% of the road segments have vehicle flow rate higher than 40 veh/h with consider-
ing vehicle friendship. This is because the vehicles drive on the road segments more densely with
increased speeds, resulting higher vehicle flow rates. The above observations confirm the effec-
tiveness of utilizing vehicle friendship in both improving road network utilization efficiency and
fulfilling the vehicles’ travel expectations.

From Figure 16, we can also see that around 10% and 20% of the road segments in Rome and San
Francisco have vehicle flow rate lower than 50 veh/h and 70 veh/h, respectively. This is because
that the travel time of only around 78% of the road segments in Rome and around 85% of the road
segments in San Francisco follows normal distribution (Section 3.4). Both TOP and TOP-Advanced

cannot estimate the travel time with a sufficient accuracy on the road segments whose travel time
does not follow normal distribution, which causes the vehicles’ driving speed to be less optimized.
We leave the development of more sophisticated road segment travel time estimation methods as
our future work.

5.3.2 Traffic Signal Delays. To verify the effectiveness of considering the delays caused by red
traffic signals in the estimation of the vehicles’ arrival time to the positions of their trajectory, we
measured the CDF of the average driving speed of all the vehicles with and without considering
red traffic signal delay, respectively, which is shown in Figure 17. For Rome, we can see that about

ACM Transactions on Cyber-Physical Systems, Vol. 4, No. 2, Article 17. Publication date: November 2019.



17:22 L. Yan and H. Shen

Fig. 15. Effectiveness of consider-

ing vehicle friendship on average

vehicle driving speed.

Fig. 16. Effectiveness of consider-

ing vehicle friendship on average

road segment flow rate.

Fig. 17. Effectiveness of consider-

ing traffic signal delay on average

road segment flow rate.

Fig. 18. Effectiveness of considering traffic signal delay on average vehicle driving speed.

50% of the vehicles have average driving speed higher than 38 km/h with considering red traffic
signal delay, and about 75% of the vehicles have average driving speed higher than 38 km/h without
considering red traffic signal delay. For San Francisco, we can see that about 25% of the vehicles
have average driving speed higher than 30 km/h with considering red traffic signal delay, but
around 50% of the vehicles have average driving speed higher than 30 km/h without considering
red traffic signal delay. We can observe that considering the delay caused by red traffic signal makes
the highest average driving speed achieved by the vehicles lower than that without considering
red traffic signal delay. This is because the red traffic signal completely stops the vehicles’ driving
speed to 0, which prevents the vehicles from driving too fast on the road segments. We also notice
that after considering red traffic signal delay, more vehicles are able to drive with average speed
higher than 20 km/h in both Rome and San Francisco. This demonstrates that although the traffic
signal reduces the vehicles’ driving speed, considering its delay is beneficial for improving the
gaming efficiency, thereby increasing the driving speed of overall vehicles.

In addition, we also measured the vehicle flow rate of the road segments, which is as shown in
Figure 18. For Rome, about 50% of the road segments have vehicle flow rate higher than 40 veh/h
with considering red traffic signal delay, and around 90% of the road segments have vehicle flow
rate higher than 40 veh/h without considering red traffic signal delay. This is primarily caused by
the reduced speed under red traffic signal. For San Francisco, the results of the two cases are quite
close, which means through estimating vehicle density with taking into account the traffic signal,
the gaming can achieve a high efficiency for the road network.

6 CONCLUSION

Previous works for speed optimization does not proactively avoid the generation of congestion
in the future. We proposed TOP, a vehicle trajectory–based driving speed optimization strategy
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aiming at minimizing each vehicle’s travel time while avoiding generation of congestion. Our
analysis on the vehicle mobility and congestion based on two real-world traces support the moti-
vation for the design of TOP. TOP uses vehicle trajectories to estimate the vehicle density of each
road segment in the near future. Additionally, we consider the friendship among the vehicles and
the delay caused by red traffic signal in the estimation of the vehicle density of the road segments.
Then, by using a non-cooperative Stackelberg game between each vehicle and the central server,
the vehicle’s driving speed is optimized so that it can drive as fast and safely as possible while
proactively avoiding generating congestion. We have conducted extensive experiments based on
the two traces. The experiment results validate the high effectiveness of TOP and its superior per-
formance compared to previous methods in terms of the utilization of road network, congestions,
and driver satisfaction. In our future work, we plan to consider vehicles’ social relationship in
avoiding road congestion and develop more reasonable schemes to motivate vehicle cooperation.
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