
IEEE/ACM TRANSACTIONS ON NETWORKING 1

MobiT: Distributed and Congestion-Resilient
Trajectory Based Routing for Vehicular Delay

Tolerant Networks
Li Yan, Haiying Shen, Senior Member, IEEE and Kang Chen

Abstract—Packet routing is important for Vehicular Delay
Tolerant Networks (VDTNs). Opportunistic routing algorithms
based on historical records are insufficiently accurate in for-
warder selection due to movement randomness of vehicles.
Trajectory-based routing algorithms tackle vehicle movement
randomness but cannot be directly used in VDTNs due to the
dependence on APs. In this paper, we develop a distributed
trajectory-based routing algorithm (called MobiT) for VDTNs.
This non-trivial task faces three challenges. First, vehicle tra-
jectories must be sufficiently collected. Second, the trajectories
cannot be updated frequently due to limited resources of the
repository nodes. Third, achieving high routing performance
even with partially collected trajectories. Our real trace study
lays the foundation of the design of MobiT. Taking advantage
of different roles of vehicles, MobiT uses service vehicles that
move in wide areas to collect vehicle trajectories, and rely on the
service vehicles and roadside units (called schedulers) for routing
scheduling. By using regular temporal congestion state of road
segments, MobiT schedules the packet to arrive at a roadside unit
prior to the destination vehicle to improve routing performance.
Further, MobiT leverages vehicles’ long-term mobility patterns to
assist routing. Our trace-driven simulation and real experiments
show the effectiveness and efficiency of MobiT.

Index Terms—Vehicular delay tolerant networks, vehicular
social networks, routing.

I. INTRODUCTION

IN recent few years, many research efforts have been de-
voted to Vehicular Delay Tolerant Networks (VDTNs) [1]–

[5]. VDTNs can alleviate bandwidth burden on networks
and serve areas with sparse infrastructures. In such vehicular
networks with sparse connection, packet delivery between
vehicles is important for many purposes. For example, a
vehicle needs to report a traffic accident to a police vehicle far
from the crash site, or a vehicle using a mobile social network
wants to share a newsfeed with its friend vehicle miles away.
In the problem of packet delivery in VDTNs, a source vehicle
wants to deliver a packet to its destination vehicle. However,
due to the high mobility of vehicles and disconnected nature
of VDTNs, efficient packet delivery is non-trivial.

Previous opportunistic routing algorithms [6]–[11] define
different utilities (e.g., meeting probabilities) and forward
the packet to vehicles or Roadside Units (RSUs) that have
larger utilities with the destination vehicle. However, these
algorithms use the vehicles’ historical meeting records to
schedule packet forwarding, which has been proven insuffi-
ciently accurate [12] due to movement randomness of some
vehicles.

Destination Source

?

Fig. 1: Demonstration of packet delivery in VDTNs.

Determining packet forwarder based on vehicles’ trajecto-
ries is effective in handling movement randomness [13]–[16].
In the trajectory-based routing algorithms, vehicles repeatedly
report trajectories to Access Points (APs) sparsely located
along roads. A central server then uses these shared trajectories
to schedule forwarders to carry the packet to the destination
vehicle in its driving route. However, these algorithms cannot
be directly used in VDTNs due to the dependence on APs.

In this paper, we aim to develop a distributed trajectory-
based routing algorithm for VDTNs. However, this task is
non-trivial. First, the vehicle trajectories must be sufficiently
collected in repository nodes for determination of trajectory-
based routing path. Second, the trajectories cannot be updated
frequently due to limited resources of the repository nodes.
Third, it is hard to achieve high routing performance with
partially collected vehicle trajectories due to lack of APs.

We first studied two real-world traces [17], [18] and gained
several observations that help tackle the challenges. (i) Urban
vehicle trips have short duration but cover several intersec-
tions. (ii) Vehicles have certain routine routes at certain times.
(iii) Some vehicles share common routines at certain times.
(iv) Vehicles in urban area generally move within small ranges,
while service vehicles (e.g., buses, delivery trucks, and garbage
trucks) move among many sub-districts.

With these observations, we design MobiT, which derives
vehicle Mobility from Trajectories for routing. First, MobiT
uses service vehicles to collect vehicle trajectories, and re-
lies on the service vehicles and roadside units (RSU) (both
are called schedulers) for determining routing path. Second,
MobiT only requires each participating vehicle to report
its trajectory to a scheduler when it starts moving (called
initial trajectory) rather than repeated reporting. To tackle
outdated trajectory, MobiT considers the temporal change
of road congestion state when using the initial trajectories
for vehicle movement prediction. Third, MobiT exploits both
short-term mobility (i.e., trajectory) and long-term mobility
(i.e., road/area visiting pattern) as complementary approaches.
When determining routing path, MobiT schedules the packet
to arrive at an RSU prior to the destination vehicle, which

IEEE/ACM TRANSACTIONS ON NETWORKING 2

generates higher performance than scheduling direct meeting
as in the previous trajectory-based algorithms. When a routing
path cannot be found, MobiT finds a path to let the packet
approach the destination vehicle. If the trajectory of the
destination vehicle is unavailable, MobiT uses the vehicle’s
long-term mobility to forward the packet.

MobiT can also overcome some problems in the previous
centralized trajectory-based methods. First, due to fluctuating
road traffic, it is very difficult to schedule an exact meeting
with the destination vehicle regardless of the powerful capacity
of the central server. Second, vehicles sometimes rely on
vehicular communication to maintain contact with the APs.
The trajectories in the central server may be outdated due
to vehicles’ intermittent connection to the APs and possible
packet loss. Third, the selection of forwarders does not con-
sider the change of road traffic at different times and road
segments. We summarize our contributions as follows:
(1) We conducted real trace studies, which lays the founda-

tion of the design for MobiT.
(2) MobiT innovatively leverages both short-term and long-

term mobility information of vehicles. It relies on vehicle
roles to collect mobility information, and also novelly
considers changes of congestion state during routing.

(3) Our trace-driven experiments and real experiment show
MobiT’s superior performance and its efficiency in real
environment.

To our best knowledge, this work is the first that real-
izes efficient distributed trajectory-based routing algorithm in
VDTNs. The remainder of the paper is organized as follows.
Section II presents literature overview. Section III presents
the trace analysis. Section IV presents the design of MobiT.
Section V presents the performance evaluation of MobiT in
trace-driven experiments and real implementation. Section VI
concludes this paper with future directions.

II. RELATED WORK

Due to sparse communication infrastructures, packets in
VDTNs are delivered in the “store-and-forward” manner that
utilizes mobility and contact information between vehicles for
packet delivery. Motivated by this requirement, many methods
have been proposed for packet delivery in VDTNs. Based on
the mobility information utilized for packet scheduling and the
way they schedule the routing of the packets, these methods
can be generally categorized into following two groups.

Opportunistic routing algorithms. Data forwarding and
routing in mobile opportunistic networks have gained a lot
of attention recently. Generally, previous algorithms extract
various kinds of utilities (e.g., meeting probability) from
vehicles’ historical records. The packet is forwarded at the
direction maximizing the utility. SADV [6] lets packets wait
at intersections until the path with minimum delay is avail-
able. Ishihara et al. [7] scheduled packet delivery by the
packet’s aggregated demand and the historical condition of
neighboring vehicles having the same packet. EBT [8] uti-
lizes users’ previous encounters to construct a relation graph
for packet forwarding. Tie et al. [9] proposed the Robust
Replication Routing (R3), which unifies mesh, MANET, DTN

routing paradigms by predicting the distribution of link delays.
Kong et al. [11] proposed a frequency-divided instantaneous
neighbors estimation system for vehicular networks. In [10],
Schwartz et al. focused on guidelines for the design of data
dissemination in vehicular networks.

These works all rely on historical information to predict
future encounter. However, as indicated in a recent work
[12], the chosen forwarder may not meet the destination
vehicle in large-scale vehicular networks due to the movement
randomness of some vehicles, which impairs routing accuracy
and efficiency.

Trajectory-based routing algorithms. Vehicles’ trajecto-
ries have recently been recognized to be helpful to handling the
vehicle movement randomness. Several recent works utilizing
vehicles’ trajectories in routing have been proposed. Wu et
al. [19] found and used the spatio-temporal correlation of
vehicle mobility in data delivery.

TBD [14], TSF [15] and STDFS [13] used APs to collect
vehicle trajectories. Then, the rendezvous position between
the destination vehicle and the packet is determined based
on accumulated trajectories, and the packet is forwarded to
the rendezvous position. Due to the sparsity of APs, ad-hoc
network is needed to bridge APs and vehicles.

However, these algorithms cannot be directly applied for
VDTNs due to their dependence on APs. In the case with
inaccessibility to APs (which is quite common in VDTN
context) and meanwhile the vehicle trajectory is susceptible
to road congestion, the accuracy of the forwarder selection
will be degraded.

III. TRACE DATA ANALYSIS

In this section, we present our trace analysis on the Rome
trace [18] and the San Francisco trace [17], which are two
taxi traces lasting for 30 days. Each taxi reports location
records (timestamp, ID, position) to a central server every
7 seconds. For each position, a precision is returned by the
GPS system. We filtered out positions with a precision larger
than 20 meters and taxis with few appearances (< 500), and
extracted road layout from vehicle movement. The positions
of vehicles are highly overlapped on popular roads, thus we
extracted intersections where vehicles make turns as landmarks
and simplified the records to sequences of landmarks. Finally,
the Rome trace has 315 taxis and 4638 landmarks, and the
San Francisco trace has 536 taxis and 2508 landmarks. When
a vehicle stays at one position for more than 5min, we consider
this position as an anchor position and it marks the ending of
the previous trajectory and the beginning of the next trajectory.
Thus, the anchor positions separate each vehicle’s record
into several trajectories. Each trajectory has a sequence of
landmarks with arrival times. Additionally, we added service
vehicles’ records to the two traces based on the schedule of
local public transit vehicles in the city of Rome [20] and San
Francisco [21]. In each of the following figures, the top figure
is for Rome and the bottom figure is for San Francisco.

A. Properties of Vehicle Trajectory

We define trajectory length as the number of covered
landmarks, and trajectory duration as the time span between

IEEE/ACM TRANSACTIONS ON NETWORKING 3

0 5 10 15 20 25 30 35
0

0.5

1

Rome

0 2 4 6 8 10 12
0

0.5

1

Length of trajectory (miles)

SF

C
D

F
 o

f
v
e
h
ic

le
s

(a) Length of trajectory.

0 100 200 300 400 500 600
0

0.5

1

Rome

0 500 1000 1500 2000
0

0.5

1

Valid period of trajectory (s)

SF

C
D

F
 o

f
v
e
h
ic

le
s

(b) Time period of trajectory.
Fig. 2: Properties of vehicles’ trajectories.

0.2 0.4 0.6 0.8 1
0

0.5

1

Rome

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Prob of trajectory matching routine

SF

C
D

F
 o

f
v
e
h
ic

le
s

(a) Trajectory matches routine.

0 10 20 30 40 50
0

0.5

1

Rome

0 50 100 150 200 250 300 350
0

0.5

1

Number of friends

SF

C
D

F
 o

f
v
e

h
ic

le
s

(b) Number of friends.
Fig. 3: Long-term mobility of vehicles.

0 2 4 6 8 10 12 14
0

0.5

1

Rome

0 2 4 6 8 10 12 14
0

0.5

1

Covered sub−districts of trajectory

SF

C
D

F
 o

f
v
e
h
ic

le
s

(a) General vehicles.

0 2 4 6 8 10
0

0.5

1

Rome

0 2 4 6 8 10
0

0.5

1

Covered sub−districts of trajectory

SF

C
D

F
 o

f
s
e
rv

ic
e
 v

e
h
ic

le
s

(b) Service vehicles.
Fig. 4: Inter-district property of trajectories.

its start time and its end time. In previous trajectory-based
routing methods, if a vehicle is congested and cannot access
APs to update trajectory, its trajectory in the central server will
be outdated. To confirm this, we measured the Cumulative
Distribution Function (CDF) of trajectory lengths and the
durations as shown in Figure 2(a) and Figure 2(b). For Rome,
the trajectory length of 90% of the vehicles is less than 5miles,
and the trajectory duration of 90% of the vehicles is less
than 200s. For San Francisco, the trajectory length of 90%
of the vehicles is less than 1mile, and the trajectory duration
of 90% of the vehicles is less than 1200s. This demonstrates
that urban vehicle trips usually last for a few minutes but
cover several landmarks. Such short trajectory is susceptible
to road congestion. For example, if a congested vehicle cannot
access APs and fail to update its trajectory for only several
minutes, its original trajectory information in the central server
is outdated. Therefore, road congestion should be considered.

B. Long-term Mobility

If a vehicle’s ratio of following a trajectory during specific
time among all of its trajectories is higher than a threshold (i.e.,
20%), we view the trajectory as the vehicle’s routine. Addi-
tionally, we define two vehicles are friends if the ratios of their
similar routines in their respective overall routines are higher
than a threshold (i.e., 50%). Note that these two thresholds are
heuristic and can be adjusted based on application requirement.
To verify that routines may reveal vehicles’ movement and the
existence of friendship, we draw Figure 3(a) that shows the
CDF of the probability that a vehicle’s trajectory matching
its routine and the CDF of the number of a vehicle’s friends.
For Rome, more than 20% and less than 80% of the vehicles
have probability of trajectory matching routine between 40%
and 60%, and 80% of the vehicles have more than 2 friends.
For San Francisco, more than 20% and less than 80% of
the vehicles have probability of trajectory matching routine
between 65% and 75%, and 80% of the vehicles have more

than 20 friends. This demonstrates that vehicles’ trajectories
usually match their routines, and most vehicles have friends
sharing similar routines. Therefore, if a packet is forwarded to
its destination vehicle’s routine or friends, this delivery should
have high probability to succeed.

C. Inter-district Property of Trajectories

We partitioned the whole areas in the two traces into
several sub-districts. Specifically, we firstly evenly chose 19
landmarks in Rome and 52 landmarks in San Francisco, as
center landmarks. Then, the other landmarks were clustered to
the respective nearest center landmark based on the Euclidean
distance. Finally, Rome has 52 sub-districts with 89 landmarks
per sub-district. San Francisco has 19 sub-districts with 132
landmarks per sub-district. We use the number of sub-districts
that a trajectory covers as its inter-district property. Since
general urban vehicles usually travel short trips (shown in
Section III-A), their trajectory may only bridge a few sub-
districts. Since service vehicles have wide movement ranges,
their trajectories may bridge much more sub-districts. To
verify this conjecture, we measured the CDF of the number of
sub-districts covered by general vehicles and service vehicles
as shown in Figure 4(a) and Figure 4(b), respectively. We see
that in both traces, most general vehicles’ trajectories (about
98%) cover only one sub-district. While more than 75% of the
service vehicles’ trajectories cover more than 4 sub-districts
in Rome, and more than 75% of the public service vehicles’
trajectories cover more than 2 sub-districts in San Francisco.
This result confirms that urban general vehicles prefer to
move within a sub-district, while service vehicles move among
at least 10% of sub-districts. Therefore, we can use service
vehicles to collect and disseminate mobility information.

IV. SYSTEM DESIGN

We consider a VDTN with n vehicles denoted by Ni(i =
1, 2, . . . , n) and make following assumptions.
(1) Each vehicle has a Dedicated Short Range Communica-

tion (DSRC) device [22]. When two vehicles are within
each other’s communication range, an encounter happens.

(2) Each vehicle is equipped with a navigation system, which
generates trajectory consisting of future positions and
estimated arrival times, and road maps [23], [24]. Note
that the arrival times of the trajectory can be estimated
with certain accuracy considering the speed limit of the
road segments. However, the estimated arrival times may
be affected by various factors (e.g., traffic congestion).

IEEE/ACM TRANSACTIONS ON NETWORKING 4

Service

AB

C D

Fig. 5: Trajectory of a service vehicle.
Destination Relay Source Service

8:30AM

AB

C D

Fig. 6: Determine the relay vehicle.
Destination Relay Source Service

8:30AM

Friend

AB

C D

Fig. 7: Utilize the friend vehicle.

Thus, we aim to let the packet always arrive at the
encounter position prior to the destination vehicle.

(3) The area in the VDTN is partitioned into multiple sub-
districts with equal number of landmarks. Following [25],
we assign a center landmark for each sub-district.

(4) Each intersection is installed with an RSU which uses
DSRC for communication [24]. The service vehicles
collect mobility information from other vehicles, and can
exchange information with the RSUs, while the others
can only drop a packet to an RSU. The reason we only
use the service vehicles to collect mobility information is
to prevent the general vehicles from suffering too much
communication overhead. Moreover, since the service
vehicles have large coverage on the road network, they
are effective in distributing mobility information.

According to the definition provided by US Department
of Transportation [26], an RSU is a transceiver that com-
municates with OBUs or other mobile devices. Therefore,
we specify that the RSUs in the VDTN context only stores
information and does scheduling. In contrast, the APs used
in previous works [13]–[16] are interconnected through back-
bone wired network, which is not available in the VDTN
scenario. There are existing works focusing on motivating
users to share mobility information [27]–[29] and ensuring
users’ privacy [30]. We leave the work for MobiT as our future
work. MobiT is a distributed routing algorithm. It leverages
the following properties of vehicle networks.
• Urban vehicle trips have short duration but cover several

landmarks (Figure 2(a), Figure 2(b)).
• Vehicles regularly follow routines (Figure 3(a)). Forward-

ing packet to the routine of the packet’s destination
vehicle helps increase delivery success rate.

• Vehicles share similar routines with their friends (Fig-
ure 3(b)). Forwarding packet to the routine of the packet’s
destination vehicle’s friends help delivery.

• Urban vehicles generally move within a few sub-districts
(Figure 4(a)), while service vehicles move among many
sub-districts (Figure 4(b)). Therefore, service vehicles are
suitable for disseminating information.

First, in Section IV-A, we make an overview of MobiT
under various cases. Then, we present the representation
of mobility information in Section IV-B. In Section IV-C,
we elaborate how the mobility information is disseminated.
Finally, in Section IV-D, we illustrate the routing process.

A. System Overview

In this section, we briefly introduce the operating process of
MobiT using Figure 5, Figure 6 and Figure 7. In these figures,
the service vehicle is the one with stable trajectory and wide

road coverage (e.g., buses, delivery trucks or garbage trucks).
The friend vehicle is the one that shares long-term mobil-
ity with the destination vehicle, the criteria for determining
friendship is specified in Section IV-B2.

We let service vehicles and RSUs cooperatively collect and
manage mobility information of vehicles, which includes the
vehicles’ short-term and long-term movements. Each vehicle
reports its trajectory when it meets a service vehicle. When
a service vehicle passes by an RSU, it exchanges mobility
information in the RSU. The RSU can only exchange in-
formation with service vehicles and accept packet. Later, the
source vehicle can request the service vehicle or the RSU to
calculate next forwarders and the encounter positions with its
packet’s destination vehicle. For example, the service vehicle
in Figure 5 circulates around the four intersections: A, B,
C and D. It has the mobility information of the vehicles it
meets on movement, such as the destination vehicle, the relay
vehicle, etc. When passing by an RSU, the service vehicle will
drop the information to the RSU.

Vehicles’ trajectory is the short-term mobility information
in MobiT. It indicates the vehicles’ movement in the near
future. In MobiT, a vehicle generates its initial trajectory at
the beginning of trip. The trajectory consists of positions the
vehicle will pass by and corresponding arrival times at the
positions. Then the routing of a packet can be scheduled by
considering the trajectory information collected from various
vehicles. For example, in Figure 6, the source vehicle wants to
send a packet to the destination vehicle. So the source vehicle
requests the RSU at A to calculate the forwarder and the
encounter position between the forwarder and the destination
vehicle. Since the RSU has the trajectory information of the
relay vehicle and the destination vehicle, which is dropped
by the service vehicle, it knows both vehicles will pass by
B. By checking road congestion state of the roads from C to
B, the RSU determines the destination vehicle will arrive at
B at around 08:30. By checking road congestion state of the
roads from A to B, the RSU determines the relay vehicle will
arrive at B no later than 08:30. Thus, the relay vehicle can
carry the packet to B prior to the destination vehicle’s arrival.
After arrival, the packet will wait at an RSU at B until the
destination vehicle passes by. The details of calculating the
encounter positions and travel time are in Section IV-D.

Since vehicle mobility information is disseminated in a
distributed manner, it is not always available. MobiT also uti-
lizes the destination vehicle’s long-term mobility information,
which includes routine and friendship, to provide clues for
deducing its movement. Routine represents the roads regularly
followed by vehicles during certain times, friendship quantifies
vehicle-to-vehicle relation based on vehicles’ similarity on

IEEE/ACM TRANSACTIONS ON NETWORKING 5

routine. For example, in Figure 7, the destination vehicle’s
routine at 08:30 is moving from C to B. Meanwhile, the RSU
knows the relay vehicle will be moving to B. So the RSU tells
the source vehicle to forward the packet to the relay vehicle,
expecting the relay vehicle to meet the destination vehicle or
find the short-term mobility information of the destination ve-
hicle near B. If the routine is also unknown, the RSU will look
for the mobility information of the destination vehicle’s friend,
which shares common routine with the destination vehicle at
around 08:30. The RSU finds the friend vehicle is moving
from C to B at this time. Then the source vehicle forwards
the packet to the relay vehicle, expecting it will meet the
destination vehicle on way. The details of the representation
of mobility information are introduced in Section IV-B.

In summary, MobiT is a distributed packet routing algo-
rithm for VDTNs. It utilizes short-term, long-term mobility
information and congestion state to schedule the forwarding
of packets. Additionally, it uses service vehicles and RSUs
to collect and manage mobility information, which prevents
participating vehicles from heavy communication overhead.

B. Representation of Vehicle Mobility

1) Short-term Mobility and Congestion-considered Update:
At the beginning of a trip, each vehicle generates its initial

trajectory. An initial trajectory of vehicle Ni is as follows:
〈Ni; {p0i , p1i , . . . , p

Q
i };Ts〉, where {p0i , p1i , . . . , p

Q
i } represents

the sequence of Q positions on the trajectory. Ts is the starting
time of this trajectory.

Each vehicle maintains its own short-term mobility infor-
mation. While service vehicle collects short-term mobility
information from every vehicle it meets. If a service vehicle
meets another service vehicle or an RSU, they exchange their
known mobility information.

Congestion state table: As mentioned before, in previous
trajectory-based algorithms [13]–[16], the estimated travel
time to the positions of a vehicle’s trajectory may be outdated
due to random traffic issue. To keep the trajectories updated,
vehicles need to report their trajectories periodically to APs.
This is not suitable for MobiT because schedulers (i.e., ser-
vice vehicles and RSUs) have limited resources and cannot
frequently communicate with many vehicles. Instead, MobiT
let schedulers store and use road segment congestion state to
update the travel time to the rest of the trajectory of each
encountered vehicle.

We use a road segment, which is the interval between two
neighbor intersections, as the basic unit of roads. It has been
shown that the travel time on a road can be estimated based
on the congestion state of composing road segments [31],
[32]. Specifically, for a road segment si, its reachable speed
is related to a vehicle density limit dmi . When the vehicle
density is below dmi , vehicles on the road segment can drive
with the free flow speed (i.e., speed limit, denoted by vmaxi).
If the vehicle density exceeds dmi , the road segment will be
congested and the vehicles have to drive with the congested
speed (denoted by vmini). djami is the vehicle density that will
cause si to be completely jammed. dmi can be obtained from

field observation, and djami can be obtained from the road
network’s designed capacity [32]. Thus, the travel time of si
under its current vehicle density di is calculated as:

t̃i =

li/v

max
i , 0 6 di < dmi

li/v
min
i , dmi 6 di < djami

∞, di > djami

(1)

It is also noticeable that urban traffic pattern repeats in daily
fashion [33]. Thus, we use the congestion states of roads under
different times to assist determining vehicle arrival times. We
firstly design the table of delays, which records the travel times
of a road’s composing segments under congested and non-
congested cases based on historical statistics. Then, for each
road, we design the table of congestion states, which uses
binary vectors to describe road congestion.

For each road segment, it has distinct travel times cor-
responding to congested and non-congested situations [31].
The totally jammed road segments are excluded from routing
consideration. We adopt existing works [31], [34] to determine
whether a segment is congested or not, and calculate the travel
time of an individual segment. For example, College Ave has
6 segments as shown in Table I. If segment 1 is congested,
it takes the vehicle 2min to drive through. Otherwise, 50s is
needed for driving through. Suppose the segments 1, 2 and
4 are congested, and the other segments are non-congested,
the travel time needed to drive through College Ave is 50s+
5min+6min+20s+2min+10s=14min20s.

TABLE I: Table of delays.
Road name College Ave
Segment ID 0 1 2 3 4 5

Congested (1) 2min 5min 6min 1min 2min 30s
Otherwise (0) 50s 2min 1min 20s 1min 10s

Then, for each sequence of road segments, we can use a
binary vector to depict its congestion states. For example, if
the segments 1, 2 and 4 of College Ave are congested, current
congestion state of the road is [0, 1, 1, 0, 1, 0]. To collect all
possible congestion states of a road during different times, the
congestion state of the road is sampled by a time unit, say per
hour. Thus, for each hour, we have several sampling results
representing all the possible congestion states of the road at
this time. Finally, we classify these congestion states along
with their respective probabilities in ascending order of time,
and get the table of congestion states of the road as shown
in Table II. In Table II, College Ave has several congestion
states under each time interval. Each congestion state has a
probability, which measures its appearance frequency among
all possible congestion states. For example, during the interval
from 00:00 to 01:00, College Ave has the probability of 0.6
to be in congestion state [0, 1, 1, 0, 1, 0] and the probability
of 0.4 to be in congestion state [1, 0, 0, 0, 1, 0]. Therefore, the
estimated travel time of College Ave during this interval is
0.6× 14 min20s+0.4× 7min30s=11min36s.

TABLE II: Table of congestion states.
Road name College Ave

Time interval Congestion states
00:00∼01:00 [0, 1, 1, 0, 1, 0], 0.6; [1, 0, 0, 0, 1, 0], 0.4
01:00∼02:00 [1, 1, 1, 1, 1, 0], 0.7; [0, 1, 1, 0, 0, 0], 0.3

... ...

Since road traffic follows certain long-term pattern even
under accident and weather change, using historical data to
describe the congestion states is reasonable [31], [35], [36].

IEEE/ACM TRANSACTIONS ON NETWORKING 6

0 0.5 1 1.5 2

 10
4

0

0.5

1

Rome

0 2 4 6 8 10

Error in travel time (s) 10
4

0

0.5

1

SFC
D

F
 o

f
tr

a
je

c
to

ri
e
s

Fig. 8: Error between estimated travel time and actual travel time.
The table of congestion states and delays for all roads are
computed offline. All schedulers are preloaded with the two
tables. Note that the travel time of the road segments estimated
in this way will be somewhat inaccurate due to various factors
(e.g., traffic congestion, inaccuracy of the measured vehicle
density). Thus, we analyze the deviation of the estimated travel
time. In routing, we also aim to let the packet always arrive
at the encounter position prior to the destination vehicle to
tolerate the inaccuracy of this travel time estimation.

Estimation of travel time and deviation: To estimate the
travel time of a trajectory, a scheduler decomposes it into
roads. For each road, the scheduler refers to Table II for the
road’s current congestion state. Then, the scheduler refers to
Table I for corresponding delays of the covered segments.
By summing the delays from the start of each trajectory,
the scheduler estimates the vehicle’s future travel time. For
example, suppose a vehicle will drive through College Ave
between 00:00 and 01:00. According to Tables I and II, the
travel time of College Ave has a probability of 0.6 to be
14min20s and a probability of 0.4 to be 7min30s. Therefore,
the road’s estimated travel time is µ = 0.6× 14min20s+0.4×
7min30s=11min36s, with standard deviation σ =√

0.6× (14min20s− 11min36s)2 + 0.4× (11min36s− 7min30s)2 =

3min20s. To demonstrate that the accuracy of the estimation
of the travel time is sufficiently high, we measured the error
between the estimated travel time and the actual travel time
for all the vehicle trajectories in Rome and San Francisco.
The results are illustrated in Figure 8. We can see that for
Rome, more than 80% of the errors are lower than 1,000s,
and for San Francisco, more than 99% of the errors are lower
than 1,000s. Recall that we let the packet always arrive at
the encounter position prior to the destination vehicle, we
conclude the estimated travel time is accurate enough.

2) Long-term Mobility: In this section, we introduce long-
term mobility, namely routine and vehicular friendship.

Routine: Vehicles’ long-term mobility has regularity [12],
which is reflected as certain roads that are frequently driven by
the vehicle at specific times. For example, people usually take
the same routine routes to commute between home and work
place. Moreover, vehicles tend to repeat their routine routes on
a daily basis. For example, people regularly drive from home
to work place at around 8:10 every morning. Therefore, we
depict the routines of a vehicle, say Ni, as shown in Table III.

TABLE III: Table of routines.
Vehicle ID Ni

Prob Route Ts Te

0.6 {p0i1, . . . , p
m
i1} 08:10 ∼ 08:20 08:30 ∼ 08:45

0.2 {p0i2, . . . , p
n
i2} 13:00 ∼ 13:20 13:30 ∼ 13:45

In Table III, each row represents a routine of Ni. Route

Alice's routine

Bob's routine

=08:05

=08:15 =08:45

=08:35

Fig. 9: Overlapping of routines.
represents the sequence of positions a routine covers. Ts is the
start time range of the routine. Te is the end time range of the
routine. Ts and Te are determined from Ni’s historical records.
The probability of each routine indicates the likelihood that the
vehicle will follow the routine and is calculated as

PRt
(Ni) = mt/M (2)

where mt is the number of occurrences that Ni followed
routine Rt as a trajectory; M is the total number of trajectories
that Ni once drove during a time period, say 30 days. The
routine table stores the routines with the sum of probabilities
larger than and closest to 80%. This threshold can be adjusted
based on system constraints.

Friendship: People living in the same area are likely to
follow similar routines. For example, suppose Alice and Bob
live in the same suburban community, every morning they
drive the same highway to downtown. Given a packet targeting
at Alice, the mobility information of Bob may be helpful.
Based on such observation, MobiT measures the relationship
between vehicles in terms of their similarity on routine.

Overlapping of routines: We define two vehicles are friends
if the ratios of their similar routines in their respective overall
routines are higher than a threshold, say αf . For example,
suppose vehicle Ni has routines: R1, R2 and R3, vehicle Nj
has routines: R2 and R3, and αf is 0.5. Since R2, R3 are the
similar routines of Ni and Nj , and they take up 66.7% and
100% of the total routines of Ni and Nj , respectively, which
are higher than 0.5, these two vehicles are friends.

Since the similar routines of two vehicles will not be com-
pletely identical, we use spatiotemporal overlap to measure
their similarity. Given two routines, say R1 of Ni and R2 of
Nj . R1 covers positions: r1 = {pi1(0), . . . , pi1(m)}, start time
range Ts1 and end time range Te1, while R2 covers positions:
r2 = {pj2(0), . . . , pj2(m

′
)}, start time range Ts2 and end time

range Te2. We use T̄s and T̄e to denote the mean of Ts and
Te, respectively. Then, R1 and R2 are similar if:∣∣T̄e1 − T̄e2∣∣ < τt∣∣T̄s1 − T̄s2∣∣ < τt (3)

|r1
⋂
r2|

|r1
⋃
r2|

> γs (4)

where τt is the threshold bounding the temporal deviation
of start times and end times. γs is the threshold bounding
the spatial deviation of the positions. The thresholds are
determined based on the traffic flow of specific scenes. To
find the best values for these parameters, we vary each variable
within certain range (e.g., [0.3, 0.8] for αf , [10 min, 60 min]
for τt, and [0.4, 0.9] for γs) and test different combinations of
the values. Specifically, we use each combination to determine
the friendship, and run our routing experiment with only using
the mobility information of the destination vehicle’s friends.
Then, we choose the combination of values that results in
the maximum success rate of delivery as the final setting.
Finally, we found αf = 0.5, τt = 15 min and γs = 0.6

IEEE/ACM TRANSACTIONS ON NETWORKING 7

are the best parameters for Rome and San Francisco. For
example, suppose both Alice and Bob only have one routine,
and their routines are as illustrated in Figure 9. We can see
the temporal deviations of the start times and end times of the
routines are

∣∣T̄s1 − T̄s2∣∣ = 10 min and
∣∣T̄e1 − T̄e2∣∣ = 10 min,

respectively; the spatial deviation of the positions of the
routines is |r1

⋂
r2|

|r1
⋃
r2| = 0.67. Therefore, these two routines are

similar, and Alice and Bob are friends to each other.
In MobiT, routine extraction and friendship determination

are conducted by service vehicles and RSUs since they have
the bulk of vehicles’ short-term mobility information. A rep-
resentative friend list is as shown in Table IV.

TABLE IV: Table of friends.
Vehicle ID Friends
N1 N0(0.5), N2(0.3), N3(0.2), N4(0.1)
N4 N0(0.4), N1(0.2)
... ...

C. Mobility Information Collection and Distribution

Recall each vehicle reports its initial trajectory to nearby ser-
vice vehicle or RSU only once. Service vehicles usually cover
arterial roads [37]. Therefore, they are likely to encounter more
vehicles than general vehicles. Also, as shown in Figure 4(b),
service vehicles move among a wide range of sub-districts.
So they are likely to stretch into majority of the corners of
the road network. Therefore, MobiT utilizes service vehicles
as the collector and distributor of mobility information. Based
on the collected historical short-term mobility information, the
schedulers count the frequencies of repeated trajectories and
prepare the table of routines for each vehicle by the methods
of determining routines in Section IV-B2. Also, by comparing
the routines of every two vehicles, the schedulers determine
vehicle-to-vehicle friendship. In addition to short-term mobil-
ity information, the schedulers exchange their deduced long-
term mobility information during each other’s encounter.

MobiT combines service vehicles with RSU to maximally
make the mobility information discoverable to schedulers. The
procedures of the distribution of the mobility information to
local areas can be summarized as follows:
(1) Whenever a service vehicle Nr meets another service

vehicle Nt, they exchange mobility information.
(2) Whenever Nr approaches an RSU, Nr copies its mobility

information to the RSU.
Therefore, as long as a general vehicle Ni’s mobility informa-
tion is carried to a sub-district, it will be kept in a local service
vehicle or RSU. The service vehicles and RSUs (i.e., sched-
ulers) are also responsible for updating vehicles’ trajectories.
Each time when a scheduler encounters a general vehicle Ni, it
checks if it has Ni’s trajectory. If affirmative and the trajectory
is calculated within one hour, no update is needed because the
congestion table is for each hour. Otherwise, it updates the rest
of the trajectory. The distribution of the mobility information
needs a period of time for initialization. Since the service
vehicles generally start operating early in the morning (e.g.,
05:30), and the rush hour of a city road network usually starts
at 7 : 30 in a daily manner [38], we set the initialization
time of short-term mobility information (i.e., initial trajectory)
distribution to be 2 hours. In addition, since the long-term

mobility information among vehicles is relatively more stable,
we set the initialization time of long-term mobility information
distribution (i.e., friendship, routines) before general vehicles’
usage of MobiT to be 7 days. During the initialization time, we
let the service vehicles determine vehicle-to-vehicle friendship
and routines based on the general vehicles’ historical move-
ment records, and fully exchange and update their stored long-
term mobility information. Note that for different cities, the
initialization time can be adjusted accordingly.

On the one hand, due to certain practical communication
limitations (e.g., short channel coherence time, encryption-
decryption delay), transferring small packets is preferred for
vehicular communication [39]. On the other hand, since we
aim to enable the packet to arrive at the encounter position
prior to the destination vehicle, we actually only need the
future positions of the destination vehicle to schedule the en-
counter. Therefore, in our vehicular communication, we limit
the number of transferred landmarks in a trajectory to be lower
than a threshold Qth (e.g., 200), and a vehicle only transfers
the last Qth landmarks in its trajectory (i.e., future positions
of the vehicles). Note that Qth can be adjusted according to
system requirements (e.g., communication constraint). Thus,
we not only ensure that the packet size will not be too large,
but also ensure that the trajectories stored in the packets are
useful for scheduling the encounter.

Without loss of generality, we analyze the probability that
the mobility information of a vehicle Ni can be stored in a
sub-district (say Am) to show that the mobility information
is easily discoverable. It is calculated as Pdi(Am) = 1 −∏K
r=1(1−Pt(λr)Pe(Am)), where Pdi(Am) is the probability

of discovering the mobility information of Ni in Am; K is
the total number of service vehicles that have Ni’s mobility
information and can move to Am; λr is service vehicle Nr’s
trajectory which will pass Am; Pt(λr) is the probability that
Nr will follow trajectory λr in its movement; Pe(Am) is the
probability that Nr can leave Ni’s mobility information in
Am. Since trajectory is an explicit indicator of a vehicle’s
movement, Pt(λr) ≈ 1 in most cases. The wide movement
range of service vehicles guarantees there can be several
of them moving through Am at different times, namely K
can be large enough. With the above information collection
method, Pe(Am) ≈ 1, which makes mobility information
easily discoverable.

D. Routing Process

MobiT aims to deliver the packet to the encounter position
prior to the destination vehicle, the packet then waits at
a nearby RSU for the destination vehicle. In MobiT, ser-
vice vehicles and RSUs schedule the forwarding of packets
since they have collected vehicles’ mobility information. The
scheduling of routing can be summarized to three cases. 1)
When the destination vehicle’s short-term mobility information
is available, the packet will be forwarded to the destina-
tion vehicle’s future position (or nearby position) along a
trajectory-based routing path that leads to the shortest delay; 2)
When the scheduler only has the destination vehicle’s long-
term mobility information, the packet will be forwarded to

IEEE/ACM TRANSACTIONS ON NETWORKING 8

D

B

C A

N1

N2

SourceForwarderDestination

(a) Complete list of forwarders.

SourceForwarderDestination

D

B

C A

N1

N2

(b) Incomplete list of forwarders.
Fig. 10: Selection of forwarders.

the destination vehicle’s or its friend’s routine; 3) When no
mobility information of the destination vehicle is available,
the packet will be forwarded to service vehicles, aiming to
increase its probability of finding more useful information.

1) Short-term Mobility Based Routing: For trajectory-based
routing path determination, MobiT extends its predecessor,
STDFS [13]. In STDFS, based on travel time predictions,
the central server constructs an encounter graph and finds the
chain of trajectories connecting current position of the source
vehicle and the destination vehicle with acceptable delay and
delivery probability. MobiT further considers road traffic of
each road segment in different times for calculating vehicle
travel time. Moreover, MobiT aims to deliver the packet to
the encounter position prior to the destination vehicle.

Routing with a complete list of forwarders: As described
in Section IV-B1, for each road covered by a trajectory, we can
calculate estimated travel time µ with deviation σ. Suppose the
means and the deviations of the travel times of the M roads
included in a chain of trajectories are {µ1, µ2, . . . , µM} and
{σ2

1 , σ
2
2 , . . . , σ

2
M}, respectively. Suppose the total expected

travel time of the chain is U with deviation V . Since the
travel times of roads are normally distributed and statistically
independent [40], so U =

∑M
i=1 µi, and V 2 =

∑M
i=1 σ

2
i .

According to the “68-95-99.7 rule” of normally distributed
random variables [41], the actual travel time of the chain has
the probability of 68% to be within the range [U −V,U +V].
This helps to find a chain that can drop packet in an RSU
prior to the time the destination vehicle passes by the RSU.

From the constructed encounter graph, the scheduler may
find several chains of trajectories that connect the current
position of the source vehicle and each of the encounter
positions on the destination vehicle’s trajectory. As shown in
Figure 10(a), the packet can be forwarded by N1, N2 and N3

along path A → B → C → D. For the destination vehicle,
its travel time (denoted by Ur) with deviation (denoted by Vr)
from its current position (denoted by pc) to an encounter posi-
tion (denoted by pe) can be estimated as explained above. For
each encounter position, the wait time of a packet forwarded
by a chain in the worst case equals Tw = Ur−Vr− (U +V),
where U and V are the expected travel time and its deviation,
respectively. The scheduler firstly filters out the late chains that
have Tw ≤ 0. Then, from the remaining chains, it selects the
one with the shortest U + V (i.e., shortest delivery delay) as
the routing path. After arrival, the packet waits in the nearby
RSU for the meeting with the destination vehicle.

Routing with incomplete list of forwarders: A scheduler
may not find a chain of trajectories that completely connects
the source vehicle with the destination vehicle due to partial
mobility information and distant destination vehicle. In this

case, it finds a list of forwarders that can forward the packet to
a position, say pn, close to the destination vehicle’s trajectory.
As shown in Figure 10(b), the packet can be forwarded by N1

and N2 along path A → B → C. Obviously, the estimated
delivery delay should be no longer than Ur−Vr so the packet
still has time to encounter its destination vehicle. Finally, we
need to minimize the routing delay of the incomplete path and
the delay from pn to the destination vehicle.

When a scheduler cannot find a vehicle succeeding the
current vehicle Ni (i.e., the last vehicle of a path flow from
the source) that can drive to the destination vehicle closer
than the position pi that Ni can carry the packet to, this
chain of trajectories becomes incomplete and pi becomes
the final position that the packet can be delivered by this
path. Suppose the scheduler finds C incomplete chains of
trajectories and their final delivery positions are denoted by
pi(i = 0, 1, . . . , C). For each pi, the scheduler estimates the
delivery delay U i1 with deviation V i1 . The scheduler then uses
the map to find the geographically shortest path from pi to an
encounter position, pe, on the destination vehicle’s trajectory.
Using the arrival time on pi, the scheduler also estimates
the delay of the shortest path U i2 with deviation V i2 . The
incomplete list of forwarders needs U i1 + V i1 to deliver the
packet to position pi and U i2 + V i2 is needed to finish the rest
path to the destination vehicle.

To make sure that the packet arrives at pe no later than the
destination vehicle, the scheduler filters out the chains with
U i1 + V i1 +U i2 + V i2 ≤ Ur − Vr. Then, the scheduler ranks the
chains of trajectories by pi’s distance to pe from short to long.
The top 30% chains are selected as candidates. Finally, the
scheduler selects the chain with the shortest U i1+V i1 +U i2+V i2
from these candidates to ensure short delivery delay.

2) Long-term Mobility Based Routing: It is possible that a
scheduler cannot find the proper short-term mobility informa-
tion. In this case, the long-term mobility information (i.e., the
routine table (Table III) and friend table (Table IV)) will be
used to guide the packet to the activity area of the destination
vehicle. Specifically, from the routine table, according to
current time, the scheduler firstly determines which routine the
destination vehicle is likely to use. The routine is represented
by the positions covered by the routine ({pi1(0), . . . , pi1(m)})
with mean end time T̄e. Then the scheduler also uses encounter
graph to find chains of trajectories that connect current position
of the source vehicle with the destination vehicle’s routine.

The process of selecting routing chain is the same as
that with short-term mobility. Since the routines can only be
auxiliary, we filter out the invalid chains. The remaining time
of the destination vehicle’s routine from current time Tc is
(T̄e − T̄c) from Table III. Then, to ensure the packet can be
forwarded to the destination vehicle before it arrives at the
ending point of the routine, the scheduler filters the chains
with Di ≤ T̄e− Tc, where Di is the estimated delivery delay.
Finally, the chain with the shortest travel time is selected.

If the destination vehicle’s routine is also unavailable, the
scheduler refers to the table of friends. For example, given
destination vehicle N1, Table IV shows its friends are N0,
N2, N3 and N4. Among the friends with available mobility
information, the scheduler chooses the friend vehicle that has

IEEE/ACM TRANSACTIONS ON NETWORKING 9

Algorithm 1 Routing executed by a general vehicle Ni.
1: if start a new trajectory then
2: Report its trajectory to its first encountering scheduler
3: repeat
4: if need to send a packet to destination vehicle Nj (source or

forwarder) then
5: if encounter a scheduler Ns then
6: Request Ns for a routing chain to destination vehicle

Nj

7: if has no routing chain or this new chain is better then
8: Use this new chain
9: until arrive at the scheduled position pi

10: if encounter the next forwarder at the scheduled position then
11: Forward the packet to the forwarder
12: else
13: Drop the packet to a nearby RSU for further routing schedule

or waiting for destination vehicle Nj

the highest ratio of similarity with N1. Then the friend’s
mobility information will be used as previously described.

3) Routing without Mobility Information: It is likely the
scheduler does not have any useful mobility information. If
the scheduler is a service vehicle, it will keep the packet. If
the scheduler is an RSU, it will first keep the packet and then
transfer it to the service vehicle passing by.

Because each scheduler stores partial mobility information
of vehicles in the system, a routing path generated by a sched-
uler may not be the best routing path. Therefore, whenever
a node carrying a packet encounters a scheduler, it requests
the scheduler to update the routing path if a chain with
shorter delivery delay is found. In the routing process, if the
packet misses the next forwarder, it requests nearby scheduler
to launch a new round of routing. Algorithm 1 shows the
pseudocode of the routing algorithm.

Although we aim to forward every packet to the scheduled
encounter position with the destination vehicle, it is still
possible that some packets are delivered to an RSU which is
close to the encounter position but no service vehicles will pass
by for a long time due to certain exceptions (e.g., abnormal
traffic). To solve this problem, we set a staying time threshold
for the packets (e.g., 30 minutes). If a packet has stayed in
some RSUs longer than this threshold, it can be piggybacked
by any general vehicles passing by and be forwarded to a
service vehicle whenever it is possible. The threshold can be
adjusted according to the hourly average waiting time of the
successfully delivered packets in the RSUs. Specifically, we
periodically (e.g., after every 5 minutes) calculate the average
waiting time of all the successfully delivered packet in the
previous hour.

V. PERFORMANCE EVALUATION

We compared MobiT with two representative algorithms:
the Shared-Trajectory-based Data Forwarding method (STDFS
in short) [13], and the Robust Replication Routing (denoted
by R3) [9]. STDFS depends on vehicles’ trajectories reported
through APs to schedule future meeting position between
forwarder and destination vehicle. In R3, vehicles record their
historical contact with others. The packet carrier utilizes the

historical delays of the vehicles to the destination vehicle to
guide packet routing. In simulations, we equipped 2782 and
1504 landmarks with RSUs/APs in Rome and San Francisco,
respectively, which is as specified in STDFS [13]. We mea-
sured following metrics:
• Success rate: The percentage of packets that successfully

reach their destination vehicles. Specifically, after the
simulation, the success rate of packet delivery is cal-
culated as the number of packets that have reached the
communication range of their destination vehicles within
the packet TTL, divided by the total number of packets
sent out during the simulation. The packets that fail to
reach their destination vehicles within the packet TTL
are counted as packet loss due to signal propagation.

• Average delay: The average time (in seconds) used by
packets to reach their destination vehicles. Note that the
delay of unsuccessful packets, namely the packet TTL, is
also considered.

• Average number of information queries: The average
number of information queries transmitted among nodes.

• Average vehicle memory usage: The average number of
memory units used by each vehicle. Since the basic data
of MobiT (i.e., a congestion state vector, delays) usually
include several integers (4 bytes) or doubles (8 bytes),
we set each memory unit takes 50 bytes. Each piece
of mobility information (i.e., trajectory, routine) includes
sequences of integers, doubles and strings, so it takes
around 4 ∼ 8 memory units. Each entry of table (i.e.,
congestion state, delay, friend) takes 1 memory unit.

A. Simulation Experiment
We used the Rome [18] and the San Francisco [17] traces

introduced in Section III for evaluation. We developed a trace-
based simulation environment which is driven by each vehi-
cle’s movement event [42], [43]. Unless otherwise specified,
the experiment setting is the same as that in Section III.

The collection of congestion table and delay table was
finished offline. For Rome and San Francisco, the threshold
speeds to determine congestion are 20MPH and 30MPH,
respectively [17], [18]. The congestion state of each road
segment was sampled per hour. The communication range of
the vehicles is set to 100m according to the DSRC specifica-
tions [22], [44]. For both traces, we set the initial period to 7
days, during which service vehicles collected and disseminated
mobility information. Meanwhile, service vehicles and RSUs
extracted vehicles’ routines by Equation (2), and determined
friendship between vehicles by Equation (3) and (4) with
αf = 0.5, τt = 15min and γs = 0.6. Request rate is the
number of packets generated every 24 hours in both traces
and was set to 40 by default. Packet TTL, which is the valid
time of a packet, was set to 24 hours. The TTL for short-term
mobility information depends on trip duration.

We conducted two experiments. In one experiment, to
simulate scenarios with different levels of routing request
pressure, we varied the request rate from 20 to 70 with 10 as
the step size. In the other experiment, to explore the influence
of packet TTL on the metrics, we varied the packet TTL from
18 hours to 33 hours with 3 hours as the step size.

IEEE/ACM TRANSACTIONS ON NETWORKING 10

20 30 40 50 60 70

Request rate

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u
cc

e
ss

 r
a
te

MobiT

R3

STDFS

(a) Success rate.

20 30 40 50 60 70

Request rate

3

4

5

6

7

8

A
ve

ra
g
e
 d

e
la

y
(s

e
co

n
d
s)

10
4

MobiT

R3

STDFS

(b) Average delay.

20 30 40 50 60 70

Request rate

0.5

1

1.5

2

2.5

3

3.5

A
ve

.
#
 o

f
in

fo
rm

a
tio

n
 q

u
e
ri
e
s

10
4

MobiT

R3

STDFS

(c) Average number of info. queries.

20 30 40 50 60 70

Request rate

30

80

130

180

230

A
ve

ra
g
e
 m

e
m

o
ry

 (
b
yt

e
s)

MobiT

R3

STDFS

MobiT (service vehicle)

(d) Average memory usage.
Fig. 11: Performance with different request rates using the Rome trace.

20 30 40 50 60 70

Request rate

0.4

0.5

0.6

0.7

0.8

S
u
cc

e
ss

 r
a
te

MobiT

R3

STDFS

(a) Success rate.

20 30 40 50 60 70

Request rate

4

4.5

5

5.5

6

6.5

7

A
ve

ra
g
e
 d

e
la

y
(s

e
co

n
d
s)

10
4

MobiT

R3

STDFS

(b) Average delay.

20 30 40 50 60 70

Request rate

0.6

0.8

1

1.2

1.4

1.6

A
ve

.
#
 o

f
in

fo
rm

a
tio

n
 q

u
e
ri
e
s

10
5

MobiT

R3

STDFS

(c) Average number of info. queries.

20 30 40 50 60 70

Request rate

0

100

200

300

400

500

600

700

A
ve

ra
g
e
 m

e
m

o
ry

 (
b
yt

e
s)

MobiT

R3

STDFS

MobiT (service vehicle)

(d) Average memory usage.
Fig. 12: Performance with different request rates using the San Francisco trace.

1) Success Rate: Figure 11(a) and Figure 12(a) show the
success rates of the algorithms under different request rates
in Rome and San Francisco, respectively. Figure 13(a) and
Figure 14(a) show the success rates of the algorithms under
different packet TTLs in both traces. In these figures, the
success rates follow: MobiT>STDFS>R3. We can see that
MobiT always has the highest packet delivery success rate
than the other two algorithms under various situations.

The success rates of all algorithms remain nearly constant
under different request rates, but increase with the ascending
of packet TTL. R3 always has the lowest success rate. This
is because vehicles have independent and random movement,
vehicles’ historical meeting records with the destination vehi-
cle does not guarantee another meeting with it in future. Thus
the selection of forwarder may be mistaken.

In contrast, STDFS has much higher success rate. It is be-
cause the packet is always forwarded to a future position of the
destination vehicle with certain accuracy. If vehicles’ move-
ment is not influenced by road congestion, or its trajectory in
central server is continuously updated without disconnection,
the forwarder is highly likely to meet the destination vehicle.

MobiT always achieves the highest success rate. This is
because MobiT considers road congestion state in estimating
vehicles’ arrival times on trajectory, which makes the estima-
tion more tolerant to traffic change. Also, MobiT is not afraid
that trajectory may be outdated because it uses road delay table
corresponding to road congestion to dynamically estimate the
arrival times of vehicles when scheduling routing. Moreover,
MobiT aims to let packets arrive at the meeting position prior
to the destination vehicle through considering various kinds of
mobility information, which also increases the success rate.

2) Average Delay: Figure 11(b) and Figure 12(b) show
the average delay of the algorithms under different request
rates in Rome and San Francisco, respectively. Figure 13(b)
and Figure 14(b) show the metric under different packet

TTLs in both traces. In Rome, the average delays follow:
MobiT<STDFS<R3. While in San Francisco, the average
delays follow: MobiT<R3<STDFS. We can see that MobiT
always achieves the best delay performance.

R3 does not know the position of the destination vehicle,
so it is likely to select the vehicle that will not meet the
destination vehicle as forwarder. Therefore, it has the highest
delay. Although STDFS knows the future position of the
destination vehicle from its trajectory, it can only forward
packet when a complete chain of trajectories connecting the
source vehicle and the destination vehicle is available. Also
the destination vehicle’s disconnection to APs will make its
trajectory outdated, thereby hindering the efficient delivery of
the packet. So STDFS ranks the second. MobiT utilizes various
kinds of vehicles’ mobility information to help the packet keep
approaching the actual activity area of its destination vehicle,
so it has the shortest delay.

3) Average Number of Information Queries: Figure 11(c)
and Figure 12(c) show the average number of information
query of the algorithms under different request rates in Rome
and San Francisco. Figure 13(c) and Figure 14(c) show the
metric of the algorithms under different packet TTLs in both
traces. The average number of information query follow:
R3<MobiT<STDFS. We can see that MobiT achieves less
information query overhead than STDFS but more information
query overhead than R3. This is because STDFS requires
vehicles to repeatedly report their trajectories to the APs, so
it has the highest number of information query. In contrast,
MobiT only needs vehicles to report their initial trajectory to
schedulers. Therefore, it ranks the second. In R3, information
query only happens in the encounter of nodes with suitable
delay predictions. Therefore, it ranks the lowest.

4) Average Memory Usage: Figure 11(d) and Figure 12(d)
show the average memory usage of the algorithms under
different request rates in Rome and San Francisco, respec-

IEEE/ACM TRANSACTIONS ON NETWORKING 11

20 25 30

TTL (hour)

0

0.2

0.4

0.6

0.8

S
u
cc

e
ss

 r
a
te

MobiT

R3

STDFS

(a) Success rate.

20 25 30

TTL (hour)

2

4

6

8

10

12

A
ve

ra
g
e
 d

e
la

y
(s

e
co

n
d
s)

10
4

MobiT

R3

STDFS

(b) Average delay.

20 25 30

TTL (hour)

0.5

1

1.5

2

2.5

3

3.5

A
ve

.
#
 o

f
in

fo
rm

a
tio

n
 q

u
e
ri
e
s

10
4

MobiT

R3

STDFS

(c) Average number of info. queries.

20 25 30

TTL (hour)

0

50

100

150

200

250

300

A
ve

ra
g
e
 m

e
m

o
ry

 (
b
yt

e
s)

MobiT

R3

STDFS
MobiT (service vehicle)

(d) Average memory usage.
Fig. 13: Performance with different TTLs using the Rome trace.

20 25 30

TTL (hour)

0.3

0.4

0.5

0.6

0.7

0.8

S
u
cc

e
ss

 r
a
te

MobiT

R3

STDFS

(a) Success rate.

20 25 30

TTL (hour)

3

4

5

6

7

8

9

A
ve

ra
g
e
 d

e
la

y
(s

e
co

n
d
s)

10
4

MobiT

R3

STDFS

(b) Average delay.

20 25 30

TTL (hour)

0.6

0.8

1

1.2

1.4

1.6

A
ve

.
#
 o

f
in

fo
rm

a
tio

n
 q

u
e
ri
e
s

10
5

MobiT

R3

STDFS

(c) Average number of info. queries.

20 25 30

TTL (hour)

0

100

200

300

400

500

600

700

A
ve

ra
g
e
 m

e
m

o
ry

 (
b
yt

e
s)

MobiT

R3

STDFS

MobiT (service vehicle)

(d) Average memory usage.
Fig. 14: Performance with different TTLs using the San Francisco trace.

tively. Figure 13(d) and Figure 14(d) show the metric of the
algorithms under different packet TTLs in both traces. For
MobiT, we additionally measured the metric for service vehicle
and RSU, which is represented with “Service”. In Rome, the
metric follows: R3>Service>MobiT>STDFS. While in San
Francisco, the metric follows: Service>R3>MobiT>STDFS.
We can see that the memory usage of general vehicle is
comparable to the one of STDFS.

Since R3 has duplicated packets, and each vehicle needs to
maintain the distribution of path’s historical delays, vehicles in
R3 have the highest memory usage. In MobiT, general vehicles
only need to maintain short-term mobility information and oc-
casional packets. Therefore, MobiT uses much lower memory
than R3. On the other hand, service vehicles and RSUs need
to maintain much mobility information and awaiting packets.
Therefore, their memory usage is comparable to that of R3.
In STDFS, vehicles only need to record their trajectory. In
contrast to MobiT, in which a vehicle may need to help
forward packet even if they are not determined to approach
the destination vehicle, STDFS only requires vehicles that
can form a complete chain of trajectories between the source
vehicle and the destination vehicle. Therefore, STDFS uses the
least memory.

5) Impact of Communication Range: To demonstrate the
impact of vehicle-to-vehicle communication range on perfor-
mance, we measured the success rate and the delay of packet
delivery under various communication ranges. The TTL of
the packets is set to 33 hours, and the request rate is set to
70. Figure 15(a) and Figure 15(b) show the success rates and
the average delivery delays of the algorithms under different
communication ranges in Rome, respectively. Figure 16(a) and
Figure 16(b) show the success rates and the average delivery
delays of the algorithms under different communication ranges
in San Francisco, respectively. The success rates follow: Mo-
biT>STDFS>R3, and the delivery delays generally follow:

R3>STDFS>MobiT. We can see that MobiT achieves the
highest success rate and lowest delivery delay in both traces.

With the increasing of the communication range, the success
rates of the three methods generally increase, which is espe-
cially obvious for R3. This is because that R3 does not know
the possible position of the destination vehicle, so increasing
the communication range can greatly increase the likelihood of
finding the destination vehicle for the source vehicle. However,
we can also notice that the increasing of the success rates is
slowing down, which verifies the low efficiency of R3.

In comparison, the increasing of success rates of STDFS
and MobiT is much flatter. This is because that they uti-
lize the future position of the destination vehicle to realize
packet delivery, increasing the communication range will not
drastically benefit their probability of finding the destination
vehicle. However, when the destination vehicle’s movement is
influenced by road congestion, or its trajectory in central server
is not continuously updated, the delivery of packet in STDFS
will fail, which results in its lower success rate than MobiT.
The same reasons apply for the results of delivery delays.

6) Effectiveness of Different Mobility Information: To
demonstrate that the mobility information is helpful in as-
sisting the source vehicle to find the destination vehicle, we
also measured the durations (seconds) of using short-term and
long-term mobility information in the delivery of all successful
packets in both traces. The TTL of the packets is set to 33
hours, and the request rate is set to 70. The measurement
results are illustrated in Figure 17. We can see that for Rome,
in the delivery of about 50% of the packets, the duration of
utilizing short-term mobility information for packet routing
is longer than 2 hours. In contrast, in the delivery of only
about 20% of the packets, the duration of utilizing long-term
mobility information for packet routing is longer than 1 hour.
This is because that Rome’s road segments are quite crowded
at popular sites and have short distance [18], which makes the

IEEE/ACM TRANSACTIONS ON NETWORKING 12

100 300 500 700 900 1100

Communication range (m)

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 r

a
te

MobiT

R3

STDFS

(a) Success rate.

100 300 500 700 900 1100

Communication range (m)

2

4

6

8

10

12

A
v
e
ra

g
e
 d

e
la

y
 (

s
e
c
o
n
d
s
)

10
4

MobiT

R3

STDFS

(b) Average delay.
Fig. 15: Rome trace.

100 300 500 700 900 1100

Communication range (m)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

S
u
c
c
e
s
s
 r

a
te

MobiT

R3

STDFS

(a) Success rate.

100 300 500 700 900 1100

Communication range (m)

4

5

6

7

8

9

A
ve

ra
g
e
 d

e
la

y
(s

e
co

n
d
s)

10
4

MobiT

R3

STDFS

(b) Average delay.
Fig. 16: San Francisco trace.

0 5 10 15 20 25

0

0.5

1

Short-term

Long-term

0 5 10 15 20

Duration (hour)

0

0.5

1

Short-term

Long-term

C
D

F
 o

f
re

q
u

e
s
ts

Fig. 17: Durations of using short-term and long-term mobility information.

short-term mobility information less likely to be outdated and
enables the information to be shared among the schedulers
(i.e., service vehicles, RSUs) more quickly. While for San
Francisco, in the delivery of about 50% of the packets, the
duration of utilizing long-term mobility information for packet
routing is longer than 1 hour. In contrast, in the delivery of
only about 20% of the packets, the duration of utilizing short-
term mobility information for packet routing is longer than
1 hour. This is because that the road segment distribution of
San Francisco is more uniform than that in Rome [17], and
the service vehicles are more sparsely distributed in the road
network, which makes it harder for the source vehicle to know
the short-term mobility information of the destination vehicle.

B. Real Experiment

In this section, we introduce the details and results of a
real experiment of MobiT in a university campus. 4 vehicles
and one RSU participated in this experiment.

1) Experiment Settings: The experiment lasts for 40min.
Each vehicle drives approximately at the speed of 20MPH,
which is the speed limit of the campus. Under such settings,
we consider a vehicle is in congestion if its driving speed is
lower than 10MPH. Each vehicle is equipped with a laptop
that can transmit and receive packets within the transmission
range around 70m∼ 80m. We use User Datagram Protocol
(UDP) [45] as the transmission protocol between laptops. The
communication range of a laptop netcard is around 70 ∼ 80m,
which makes it qualified as a DSRC device. Figure 18(a)
shows the experiment site, which consists of two circle routes
and one connection route. We use 9 positions as landmarks, as
numbered in Figure 18(b). The laptops are placed in cars as
shown in Figure 18(c). The RSU, as shown in Figure 18(d),
is placed at landmark 6. Each route is represented with a
series of these landmarks. Vehicles need about 30s to move
between neighbor landmarks. Specifically, V1 follows route:
4 → 5 → 6 → 1 → 2 → 3; V2 follows route: 9 → 7 → 6 →

1 → 2 → 3 → 4 → 5 → 6 → 7 → 8; V3 follows route:
9 → 8 → 7 → 6 → 1 → 2 → 3 → 4 → 5 → 6 → 7; V4
follows route: 9→ 7→ 8. V2 and V3 are service vehicles. Ve-
hicles generate and update trajectories since the beginning of
movement. Routes are tagged with timestamps at the moment
vehicles start moving, which generates trajectories. Routines
are deduced by the service vehicles. From the definition of
friendship, we see that the friends of V1 are: V2 and V3; the
friends of V2 are: V1 and V3; the friends of V3 are: V1 and V2;
while V4 has no friends. For comparison, we also implemented
R3 and STDFS in our experiment.

2) Experimental Results: We let vehicles fully exchange
mobility information during initial period, which lasts for
6min. After the initial period, each vehicle began to generate
70 packets every 6min until the end of experiment. Each
packet randomly chose a vehicle as its destination vehicle. We
recorded success status, TTL, timestamp of each forwarding of
a packet and the hops the packet transited. For each vehicle, we
also calculated the number of packets and mobility information
it processed during the experiment. Since the experiment of
our small-scale real-world prototype lasts for only 40min, we
correspondingly shrink the TTL of packets. We varied the
packet TTL from 4min to 16min with 3min as the step size.
The results are as shown in Figure 19.

Success rate Figure 19(a) shows the success rates of packets
in the three algorithms under various packet TTLs. We see that
after the packet TTL is larger than 13min, the success rate of
MobiT stabilizes at around 75%, the success rate of STDFS
stabilizes at around 58%, and the success rate of R3 stabilizes
at around 20%. We found that most failed packets have
encounter positions between landmark 7, 8 and 9. Since there
is no RSU at this road section, these packets have to move
with carriers. In R3, the possible position of the destination
vehicle is unknown, and the packet can only be delivered when
it directly meets the destination vehicle, which results in a very
low success rate. In STDFS, the packets are delivered to the
scheduled position to encounter with the destination vehicle,
so the success rate is greatly improved. In MobiT, with the
help of short-term and long-term mobility information of the
destination vehicle, the packets always move with the carriers
that have high likelihood to meet the destination vehicle, which
results in the highest success rate.

Average delay Figure 19(b) shows the average delays of
all packets and successfully delivered packets in the three
algorithms under various packet TTLs. Note that the average
delay is measured in milliseconds. In contrast to the success
rates, the average delays of the algorithms are more similar

IEEE/ACM TRANSACTIONS ON NETWORKING 13

(a) Map of experiment site. (b) Landmarks. (c) Laptop in vehicle. (d) RSU setting.
Fig. 18: Real implementation settings.

4 7 10 13 16

TTL (min)

0

0.2

0.4

0.6

0.8

S
u

c
c
e

s
s
 r

a
te

MobiT

R3

STDFS

(a) Success rate.

4 7 10 13 16

TTL (min)

0

1

2

3

4

A
v
e

ra
g

e
 d

e
la

y
 (

m
s
)

10
5

MobiT

R3

STDFS

(b) Average delay.

4 7 10 13 16

TTL (min)

1.5

2

2.5

3

3.5

A
v
e
ra

g
e
 p

a
th

 l
e
n
g
th

 (
h
o
p
)

MobiT

R3

STDFS

(c) Average path length.

4 7 10 13 16

TTL (min)

700

800

900

1000

1100

1200

A
v
e

ra
g

e
 m

e
m

o
ry

 (
b

y
te

s
)

MobiT

R3

STDFS

MobiT (service vehicle)

(d) Memory usage of vehicle.
Fig. 19: Performance with different TTLs in real implementation.

to each other, and MobiT still achieves the shortest delay.
This is largely caused by the small scale of the road network.
Similar to the success rate, the delay of successfully delivered
packets stabilizes after the packet TTL reaches 13min, while
the delay of all packets keeps increasing. It is because that
most successfully delivered packets can arrive at their destina-
tion vehicle within 13min, while unsuccessful packets’ delay
increases with TTL.

Average path length Figure 19(c) shows the average num-
ber of hops a packet transited in the three algorithms. We can
see that MobiT always has the shortest path length. Note that
the difference under various packet TTLs is tiny. Note that the
path length increases fast from 4min to 7min but stabilizes
after 13min. This is because when packet TTL is small, many
packets expired on the way to their destination vehicles. When
packet TTL is larger than 13min, most packets either reached
their destination vehicles or are carried by the last forwarder.
This shows the outstanding performance of MobiT in selecting
forwarders.

Memory usage of vehicles Figure 19(d) shows the aver-
age memory usage of vehicles in the three algorithms and
schedulers of MobiT (i.e., service vehicles and RSUs) under
different TTLs. The reasons are the same as those explained
in Section V-A4.

VI. CONCLUSION

Message delivery is important in VDTNs. Previous op-
portunistic routing algorithms cannot achieve high success
rate and low delay due to inaccurate estimation of vehicles’
future encounter. Previous trajectory-based routing algorithms
can overcome this drawback but require APs hence cannot be
directly used for decentralized VDTNs. We propose MobiT, a
distributed trajectory-based routing algorithm for VDTNs. Our
trace analysis provides foundation for the design of MobiT.
MobiT aims to let the packet arrive at an RSU prior to

the destination vehicle by scheduling based on vehicle short-
term trajectory and long-term mobility patterns including the
routines routes of itself and its common-route vehicles. By
taking advantage of traveling features of different vehicles,
MobiT uses public service vehicles and RSUs to collect vehi-
cle mobility information in a distributed manner and schedule
trajectory-based routing paths to destination vehicles. To avoid
frequent communication for trajectory updates, trajectories
only need to be reported once and then are updated based on
stored road segment congestion state at different times. Our
trace-driven and real-world experiments show MobiT’s higher
efficiency and effectiveness over previous algorithms. In the
future, we will further exploit vehicles’ relationship in routing.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants
OAC-1724845, ACI-1719397 and CNS-1733596, and Mi-
crosoft Research Faculty Fellowship 8300751.

REFERENCES

[1] Y. Wei, Z. Yu, and Y. Guan, “COTA: A robust multi-hop localization
scheme in wireless sensor networks,” in DCOSS, 2006.

[2] O. Choi, S. Kim, J. Jeong, H.-W. Lee, and S. Chong, “Delay-optimal
data forwarding in vehicular sensor networks,” IEEE TVT, vol. 65, no. 8,
2016.

[3] B. Jarupan and E. Ekici, “Prompt: A cross-layer position-based commu-
nication protocol for delay-aware vehicular access networks,” Ad Hoc
Networks, vol. 8, no. 5, 2010.

[4] J. Kim, X. Lin, N. B. Shroff, and P. Sinha, “Minimizing delay and max-
imizing lifetime for wireless sensor networks with anycast,” IEEE/ACM
TON, vol. 18, no. 2, 2010.

[5] E. C.-H. Ngai, J. Liu, and M. R. Lyu, “An adaptive delay-minimized
route design for wireless sensor–actuator networks,” IEEE TVT, vol. 58,
no. 9, 2009.

[6] Y. Ding and L. Xiao, “SADV: static-node-assisted adaptive data dissem-
ination in vehicular networks,” TVT, vol. 59, no. 5, 2010.

[7] S. Ishihara, N. Nakamura, and Y. Niimi, “Demand-based location
dependent data dissemination in VANETs,” in Proc. of MobiCom, 2013.

IEEE/ACM TRANSACTIONS ON NETWORKING 14

[8] A. Symington and N. Trigoni, “Encounter based sensor tracking,” in
Proc. of MobiHoc, 2012.

[9] X. Tie, A. Venkataramani, and A. Balasubramanian, “R3: robust repli-
cation routing in wireless networks with diverse connectivity character-
istics,” in Proc. of MobiCom, 2011.

[10] R. S. Schwartz, H. W. Van Dijk, and H. Scholten, “Towards opportunistic
sensed data dissemination in vehicular environments,” in Proc. of
PerCom, 2011.

[11] L. Kong, X. Chen, X. Liu, and L. Rao, “Fine: Frequency-divided
instantaneous neighbors estimation system in vehicular networks,” in
Proc. of PerCom, 2015.

[12] Y. Zhu, Y. Wu, and B. Li, “Trajectory improves data delivery in urban
vehicular networks,” TPDS, vol. 25, no. 4, 2014.

[13] F. Xu, S. Guo, J. Jeong, Y. Gu, Q. Cao, M. Liu, and T. He, “Utilizing
shared vehicle trajectories for data forwarding in vehicular networks,”
in Proc. of INFOCOM, 2011.

[14] J. Jeong, S. Guo, Y. Gu, T. He, and D. H. Du, “Trajectory-based data
forwarding for light-traffic vehicular ad hoc networks,” TPDS, vol. 22,
no. 5, 2011.

[15] J. Jeong, S. Guo, Y. Gu, T. He and D. H. Du, “Trajectory-based statistical
forwarding for multihop infrastructure-to-vehicle data delivery,” TMC,
vol. 11, no. 10, 2012.

[16] J. Jeong, S. Guo, Y. Gu, T. He, and D. H. Du, “TSF: Trajectory-
based statistical forwarding for infrastructure-to-vehicle data delivery
in vehicular networks,” in Proc. of ICDCS, 2010.

[17] M. Piórkowski, N. Sarafijanovic-Djukic, and M. Grossglauser, “A parsi-
monious model of mobile partitioned networks with clustering,” in Proc.
of COMSNETS, 2009.

[18] R. Amici, M. Bonola, L. Bracciale, P. Loreti, A. Rabuffi, and G. Bianchi,
“Performance assessment of an epidemic protocol in VANET using real
traces,” in Proc. of MoWNeT, 2014.

[19] Y. Wu, Y. Zhu, and B. Li, “Trajectory improves data delivery in vehicular
networks,” in Proc. of INFOCOM, 2011.

[20] “Real time rome,” http://senseable.mit.edu/realtimerome/, accessed Sep
27, 2015.

[21] “Muni system map in san francisco,”
https://www.sfmta.com/maps/muni-system-map, accessed Sep 27,
2015.

[22] C. Cseh, “Architecture of the dedicated short-range communications
(DSRC) protocol,” in Proc. of VTC, 1998.

[23] X. Cheng, A. Thaeler, G. Xue, and D. Chen, “TPS: A time-based
positioning scheme for outdoor wireless sensor networks,” in Proc. of
INFOCOM, 2004.

[24] K. Liu, M. Li, Y. Liu, X.-Y. Li, M. Li, and H. Ma, “Exploring the hidden
connectivity in urban vehicular networks,” in Proc. of ICNP, 2010.

[25] Y. Zheng, Y. Liu, J. Yuan, and X. Xie, “Urban computing with taxicabs,”
in Proc. of UbiComp, 2011.

[26] J. Chang, “An overview of usdot connected vehicle roadside unit
research activities,” Tech. Rep., 2017.

[27] L. Yan, H. Shen, and K. Chen, “TSearch: Target-oriented low-delay node
searching in dtns with social network properties,” in Proc. of INFOCOM,
2015.

[28] K. Chen, H. Shen, and L. Yan, “Dsearching: Using floating mobility
information for distributed node searching in dtns,” IEEE TMC, vol. 15,
no. 1, 2016.

[29] S. M. Hur, S. Mao, Y. T. Hou, K. Nam, and J. H. Reed, “Exploiting
location information for concurrent transmissions in multihop wireless
networks,” IEEE TVT, vol. 58, no. 1, 2009.

[30] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating routing
misbehavior in mobile ad hoc networks,” in Proc. of MobiCom, 2000.

[31] J. P. Kharoufeh and N. Gautam, “Deriving link travel-time distributions
via stochastic speed processes,” Transportation Science, vol. 38, no. 1,
2004.

[32] Y. Xu, Q.-J. Kong, S. Lin, and Y. Liu, “Urban traffic flow prediction
based on road network model,” in Proc. of ICNSC, 2012.

[33] V. Jain, A. Sharma, and L. Subramanian, “Road traffic congestion in the
developing world,” in Proc. of DEV, 2012.

[34] U. Mori, A. Mendiburu, M. Álvarez, and J. A. Lozano, “A review of
travel time estimation and forecasting for advanced traveller information
systems,” Transportmetrica A: Transport Science, vol. 11, no. 2, 2015.

[35] S. Sun, C. Zhang, and G. Yu, “A bayesian network approach to traffic
flow forecasting,” TITS, vol. 7, no. 1, 2006.

[36] Y. Zhou, S. Chen, Z. Mo, and Y. Yin, “Privacy preserving origin-
destination flow measurement in vehicular cyber-physical systems,” in
Proc. of CPSNA, 2013.

[37] K. De Zoysa, C. Keppitiyagama, G. P. Seneviratne, and W. Shihan, “A
public transport system based sensor network for road surface condition
monitoring,” in Proc. of NSDR, 2007.

[38] D. Zhang, J. Huang, Y. Li, F. Zhang, C. Xu, and T. He, “Exploring
human mobility with multi-source data at extremely large metropolitan
scales,” in Proc. of MobiCom, 2014.

[39] M. Kim, J. Lim, H. Yu, K. Kim, Y. Kim, and S.-B. Lee, “ViewMap:
Sharing private in-vehicle dashcam videos,” in Proc. of NSDI, 2017.

[40] R. Li, H. Chai, and J. Tang, “Empirical study of travel time estimation
and reliability,” Mathematical Problems in Engineering, 2013.

[41] F. Pukelsheim, “The three sigma rule,” The American Statistician,
vol. 48, no. 2, 1994.

[42] K. Chen and H. Shen, “Multicent: A multifunctional incentive scheme
adaptive to diverse performance objectives for DTN routing,” in Proc.
of SECON, 2013.

[43] K. Chen and H. Shen, “Smart: Lightweight distributed social map based
routing in delay tolerant networks.” in Proc. of ICNP, 2012.

[44] S. R. C. Shah, S. Roy, and W. Brunette, “Standard specification for
telecommunications and information exchange between roadside and ve-
hicle systems-5 ghz band dedicated short range communications (DSRC)
medium access control (MAC) and physical layer (PHY) specifications,”
ASTM, vol. E2213, no. 03, 2003.

[45] J. Postel and U. D. Protocol, “RFC 768,” User datagram protocol, 1980.

Li Yan Li Yan received the B.E. degree in Infor-
mation Engineering from Xi’an Jiaotong University,
China in 2010, and the M.S. degree in Electrical
Engineering from University of Florida in 2013.
He is currently a Ph.D. student in the Department
of Computer Science at University of Virginia. His
research interests include Cyber-Physical Systems
and Wireless Networks, with an emphasis on Data-
driven Intelligent Transportation Systems and Mo-
bile Opportunistic Networks.

Haiying Shen Haiying Shen received the B.S. de-
gree in Computer Science and Engineering from
Tongji University, China in 2000, and the M.S. and
Ph.D. degrees in Computer Engineering from Wayne
State University in 2004 and 2006, respectively. She
is currently an Associate Professor in the Depart-
ment of Computer Science at University of Virginia.
Her research interests include distributed computer
systems and computer networks, with an emphasis
on content delivery networks, mobile computing,
wireless sensor networks, cloud computing, big data

and cyber-physical systems. She is a Microsoft Faculty Fellow of 2010, a
senior member of the IEEE, and a member of the ACM.

Kang Chen Kang Chen (S’13-M’15) received the
BS degree in Electronics and Information Engi-
neering from Huazhong University of Science and
Technology, China in 2005, the MS in Communi-
cation and Information Systems from the Graduate
University of Chinese Academy of Sciences, China
in 2008, and the Ph.D. in Computer Engineering
from the Clemson University in 2014. He is cur-
rently an Assistant Professor in the Department of
Electrical and Computer Engineering at Southern
Illinois University. His research interests include

emerging wireless networks and software defined networking.

