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Abstract—So far, there is no file replication method that tries to reduce data loss in correlated node failures, which however are
common in Disruption Tolerant Networks (DTNs). In this paper, we propose a distributed file replication method (called MobileCopy) in
DTNs, which aims to achieve low probability of totally losing a file at the expense of having a high number of impacted files in an
individual large-scale correlated node failure. MobileCopy is designed for community-based file sharing systems. It has two main
components: i) data loss resistant and popularity aware file replication, and ii) distributed hash table (DHT)-based file replica indexing.
MobileCopy considers file popularity to determine the number of replicas of a file in each community. Through limiting the possible
combination of candidate replica holders, MobileCopy greatly reduces the probability of node failures that will lead to data loss, i.e.,
losing all replicas of a file. Moreover, MobileCopy enables nodes to efficiently store and fetch the placement information of file replicas
through competition based file replication and considering node mobility throughput among communities. Extensive trace-driven
experiments demonstrate the effectiveness of MobileCopy against correlated node failures compared with previous methods.
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1 INTRODUCTION

W ITH the rapidly growing popularity of mobile devices
(e.g., smartphones, tablets, laptops), file sharing in

Disruption Tolerant Networks (DTNs) has attracted signif-
icant attention. DTNs require no infrastructure and have
promising applications in many scenarios such as vehicu-
lar networks, rural areas, and mountain areas, where it is
infeasible or costly to build infrastructures to support data
communication, but have social community characteristics
that can be utilized for data communication. For example, a
vehicle needs to share the information of a traffic accident
that happens in a community area (e.g., photo, video) to a
police vehicle far from the crash site [1], or a person using
a mobile social network wants to share a newsfeed with its
friend miles away [2].

However, the properties of DTNs, including network
sparsity, node mobility, constrained communication range
and storage space, lead to limited file availability in mobile
file sharing. One simple way to increase file availability is
to increase file redundancy [3]–[6]. The works in [3], [4] let
individual nodes randomly and greedily replicate frequent-
ly queried files to nodes they meet. However, this method
achieves high file availability at the expense of redundant
resource utilization. Duong and Demeure et al. [6] further
proposed to group nodes with stable connections and let
each node check its group members’ probability of request-
ing a file and their storage status to decide whether to
create a replica. In spite of many works on file replication to
enhance file availability, they fail to consider the correlated
node failures [7]–[9] in DTNs, which may cause the failure
of all replica nodes of a file and hence permanent file loss.

Cascaded node failure, also known as correlated node
failure, refers to the scenario in which a group of nodes
fail simultaneously. Many previous studies have verified
that correlated node failures are very prevalent in wireless
networks. Kong et al. [7] indicated that in wireless sensor

networks constrained by limited power resource, the failure
of one node can result in redistribution of communication
load to nearby nodes, thereby spreading the power shut-
down of some individual nodes to correlated node failures.
Moreover, Xu et al. [8] observed that in wireless commu-
nication networks, malicious codes that originate at a small
number of nodes can infect nearby mobile devices via short-
range communication, leading to a “wireless epidemic”
failure in a wide range of nodes. In a disaster area with a
power outage, many mobile devices cannot be charged in
time, which also leads to correlated node failure.

We define a failure node set (FNS) as a set of nodes
whose simultaneous failures cause a file loss. All replica
nodes of a file form an FNS. Thus, the probability of data
loss of a certain file replica placement method is defined
as the number of FNSs caused by the method over the
total number of possible node combinations. For correlated
node failures, the probability of data loss (i.e., simultaneous
failures of replica nodes of a file) increases as the number of
FNSs in the system increases because the probability that the
failed nodes constitute one FNS increases. Since previous
file replication methods use random placement for replica
creation, almost every newly replicated file creates a distinct
FNS, so they have a higher probability of data loss under
correlated node failures. Let’s assume that the number of
replicas of each file is 3. For a system with N nodes, there
will be

(N
3

)
node combinations that can be used to replicate

a file. In the random replica placement, the probability that
a file is replicated on any node combination is uniformly
distributed. The simultaneous failure of nodes in a node
combination can result in file loss in the correlated node
failure. The distributed nature of DTNs makes it difficult for
nodes to know whether a file is permanently lost. Then, the
requests for the lost files would be continually forwarded
in the network and congest the network, which greatly
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degrades the efficiency of file sharing in DTNs.
Above examples show that when the number of files is

large enough, the replication patterns of files will distribute
over all possible node combinations. Andreas et al. [10]
showed that in decentralized storage system, prevention
of data loss caused by correlated node failures is preferred
even at the expense of the largest data recovery cost in an in-
dividual data loss event. Therefore, our goal in this paper is
to use the high number of impacted files as expense to trade
for the low probability of totally losing a file. In the above
example, if we replicate all files tom node combinations, the
probability of file loss is reduced to m/

(N
3

)
. Therefore, one

effective method to reduce the probability of data loss is to
limit the number of candidate replica holder combinations
(m) for files, namely the number of FNSs. However, realiz-
ing such file replication in distributed DTNs is non-trivial.
First, there is no central server that can help determine
the candidate replica holder combinations. Second, even if
these node combinations are determined and are notified to
all nodes, delivering replicas to these holders will lead to
long delays due to the intermittent connectivity in DTNs.
Third, even if the files are successfully replicated to the node
combinations, accessing the placement information of these
replicas is not easy. Finally, we define file popularity as the
number of queries for the file that occur during a unit period
of time. It is known that creating more replicas for files
with higher popularity and vice versa reduces unnecessary
replicas while increasing the average file availability1, but
jointly considering file popularity and data loss reduction
to enhance data availability becomes another challenge.

To handle these challenges, in this paper, we design
a distributed file replication method (called MobileCopy)
in DTNs, which aims to reduce the probability of data
loss in correlated node failures to increase file availability.
MobileCopy is specifically designed for community-based
file sharing systems in DTNs such as those in [11]–[14]. The
DTNs present certain social community structures, in which
nodes meet a preferred group of nodes more frequently than
average. Each community has a stable node as community
head and nodes frequently transit to other communities as
brokers for inter-community communication. MobileCopy
has two main components: i) data loss resistant and popu-
larity aware file replication, and ii) DHT-based file replica
indexing.

In MobileCopy, file replication is independently conduct-
ed in individual community. First, if the querying frequency
on a file in community Ci from nodes in community Cj is
high, the file is replicated to community Cj . Second, each
community head replicates the files in its community with
the considerations of both file popularity and correlated
node failures. Specifically, the community head limits the
candidate replica holder combinations in its own commu-
nity by grouping the community nodes. It determines the
number of replicas of a file based on its popularity and
launches competition between the replicas to disseminate
the replicas to the nodes with meeting ability matching the
file replicas’ popularity.

If a node cannot find its requested file in its own com-
munity, it needs to search the file globally. We use a DHT-
based file replica indexing scheme to finish the task. The

1. It is measured by the percentage of successfully resolved requests.

application of DHT in wireless file sharing system has been
widely discussed [15], [16]. Combining with the community
structure extracted from nodes in our case, the replica place-
ment information and corresponding indexing information
are cooperatively maintained by representative nodes in
different communities. The “index” of a file means the IDs of
nodes that store the file. The DHT-based file replica indexing
method maps a file to a community to store the indices of
the file’s replicas. Based on the DHT, a file requester can find
the mapped community of the file to query the indices of the
file replicas. To accelerate the speed of finding the replicas
and the replica placement information, we also designed
a method for setting file searching priority based on node
mobility throughput, which measures the node movement
intensity among communities, to help selecting the com-
munity with the most connectivity to the file request’s
current community. To our best knowledge, MobileCopy is
the first file replication method that attempts to reduce the
probability of data loss in correlated node failures in DTNs.
The contributions of this paper include:

(1) We propose a novel file replication method that
considers both file popularity and correlated node
failures to enhance file availability.

(2) We design a distributed file replica indexing method
that distributes replica placement information in
communities and make them easily accessible for file
searching.

(3) We conduct extensive trace-driven experiments to
show the effectiveness of our file replication method
and the efficiency of file searching based on the file
indexing. Additionally, we also analyze the respec-
tive effectiveness of the components in improving file
searching performance or resisting data loss caused
by correlated node failure.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the detailed design of MobileCopy. Section 3
presents the experimental results of MobileCopy. Section 4
presents an overview of related work. Section 5 concludes
this paper with remarks on our future work.

2 THE DESIGN OF MOBILECOPY

2.1 Network Model and Background

We assume a DTN consisting of N nodes, denoted by
ni (i ∈ [1, N ]). We also assume that each node has some
available storage and is willing to store files from others
to facilitate file sharing in the system. The work on how
to encourage nodes to be cooperative on file replication is
orthogonal to this work.

Community-based file sharing in DTNs has been studied
in previous works [11]–[14]. MobileCopy is designed for
these community-based file sharing systems and is built
upon such a system. Like these works, MobileCopy only
considers the DTNs in which nodes present community
and certain mobility patterns. Nodes with high probability
of meeting each other form one community. For example,
in a DTN consisting of mobile devices on campus, device
holders usually visit certain places, such as the library,
department buildings, and dorms. As shown in Figure 1,
in each community, the node with the highest centrality
(i.e., stability) is chosen to be the community head (H),
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Fig. 1: Communities.

which is used to manage the community. The node that has
the highest frequency to visit each of other communities
is selected as the broker (B) for that community. Brokers
are responsible for transferring information between this
community and other communities. In the case that the
broker for another community cannot be found, the node
that frequently visits other communities is selected as the
broker since it has high mobility to other communities.

MobileCopy focuses on file replication and file replica
indexing. Other issues including community detection [17],
file searching [18], routing are all handled using the
methods in underlying community-based file sharing
system. In the following, we present the components of
MobileCopy in detail.

2.2 Data Loss Resistant and Popularity Aware File
Replication
2.2.1 Different Node Roles in a Community
Since nodes in one community have more contacts with
each other than with nodes in other communities, and one
community is a unit for file searching in previous DTN
file sharing systems, MobileCopy regards each community
as an autonomous subsystem for file replication. In other
words, each community collects file popularity and decides
replicas for each of its own files independently. Recall
that the popularity of a file is defined as the number of
queries of the file that occurs during a period of time.
This arrangement brings about several advantages. Firstly,
it is suitable for distributed DTNs in that the tasks of file
popularity collection and file replication are distributed to
different communities. Secondly, the file popularity can be
collected more efficiently and accurately. Thirdly, since each
community creates replicas based on the file popularity
within its community, the created replicas can better satisfy
requests of nodes in the community.

MobileCopy assigns different roles to the nodes (i.e.,
community head and brokers). The community head main-
tains the indices of all files in its community. It is also
responsible for the following tasks: 1) maintaining infor-
mation of the community distribution in the network; 2)
conducting file replication in its community; 3) maintaining
the indices for the replica placement information in its com-
munity; 4) calculating the popularity of each file in its com-
munity. The brokers are responsible for inter-community
replica creation, replica placement information distribution
and file searching between communities. Finally, the roles of
the nodes and the community structure can be described as
shown in Figure 1.

To illustrate that the number of community heads and
brokers is relatively stable to fulfill their tasks, we sampled
the number of nodes with each role every 12 hours in a
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119-day record of wireless devices carried by students on
Dartmouth College campus (called the DART trace [19]).
Figure 2 shows the measured result. We see that after an
initial time period, the number of nodes with each role
stabilizes though with some fluctuation. The number of
community heads is around 80 with a fluctuating range of
[10, 15]. The number of brokers is around 200 with a fluc-
tuating range of [10, 60]. The number of brokers fluctuates
more than that of community heads. This is because that
some previous brokers may change mobility patterns.

To illustrate that the nodes with different roles have
sufficiently close and fast interaction to achieve the da-
ta replication task, we also measured the daily average
number of contacts of the nodes with different roles in
the DART trace. Figure 3 shows the measured results. We
can see that although around 80% of the brokers have a
daily average number of contacts fewer than 200, almost
all the community heads’ (more than 95%) daily average
number of contacts is higher than 300. This means that most
brokers may have limited interaction ability with others,
but the community heads serve as the pivot of gathering
and exchange information with multiple nodes. The results
verify that assigning different roles to the nodes by their
mobility characteristics can create sufficient node interaction
opportunity and help the nodes achieve data replication in
a hierarchical manner.

2.2.2 Inter-Community File Replication
The files may be shared across communities. For example,
in a rural area, the nodes in a village share many farming
information (e.g., humidity, insect coverage) with the nodes
in another village. In order to reduce the querying delay,
if the querying frequency on a file (i.e., file popularity) in
community Ci from nodes in community Cj is high, the
file is replicated to community Cj . Specifically, the head of
each community keeps track of the querying frequency of
each file in its community from every other community. If
the querying frequency from community Cj is higher than a
threshold, the head ofCi asksCi’s broker forCj to carry this
file to Cj when it moves to Cj . Then, the head of Cj creates
replicas for the file in Cj based on its popularity in Cj . The
process for inter-community file replication is illustrated in
Figure 4. In this example, the head of community C1 assigns
a replica of F1 to respective brokers for C2, C3 and C4. Then,
the brokers deliver the replicas of F1 to these communities.
Then, when nodes in these communities request for F1, they
can receive it from their own communities without inter-
community communication.

As mentioned in the introduction section, previous file
replication methods suffer from data loss under correlated
node failures since they place replicas randomly on mobile
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Fig. 4: Inter-community file replication.

nodes. In the following, we first explain why random replica
placement is data loss prone to correlated node failure.
Then, we introduce the solution for this issue in Mobile-
Copy.

2.2.3 Intra-Community File Replication

In this section, we introduce how MobileCopy constrains the
combination of file replica holders, utilizes file popularity to
determine the number of replicas and holders, and storage
limitation consideration.

Data Loss in Random Replica Placement. Randomly
allocating replicas to nodes can provide strong resistance
against independent node failures. As long as the size of
the FNS does not exceed the number of replicas of a file,
there will be at least one replica left for the file in the
system. However, failures are not totally uncorrelated, and
the occurrence of wide-range correlated failures is common
in wireless networks [7]–[9]. Suppose the set of failure nodes
include {na, nb, nc} (a, b, c ∈ [1, N ]) in a correlated failure.
If a file is only replicated in these three nodes, this file is lost
permanently. We use an example (shown in Figure 5(a)) to
show the vulnerability of random replica placement method
in correlated failures. The DTN has 9 nodes and 12 files
in total. In the figure, each square stands for a node, and
the triangles stand for file replicas. Suppose each file has
3 randomly allocated replicas in the system. Then, from
Figure 5(a), we know that there are totally 12 FNSs used
in this case. The replica placement of these files, namely
FNSs, are: File1: (n1, n7, n9), File2: (n1, n2, n4), File3: (n1,
n4, n7), File4: (n1, n7, n8), File5: (n2, n3, n4), File6: (n2,
n4, n7), File7: (n2, n5, n8), File8: (n5, n6, n9), File9: (n3,
n5, n8), File10: (n3, n5, n6), File11: (n6, n8, n9), File12: (n3,
n6, n9). Since the total number of possible FNSs (i.e., node
combinations) is

(9
3

)
= 84, the probability of permanent data

loss under random replica placement is 12/84=14.3%. The
expense of a data loss event is 1 file. When the number
of files increases, even more FNSs will be used, leading to
higher probability of the loss of some file.

We again use the setting in the example to illustrate
our method (shown in Figure 5(b)). Suppose we limit the
possible combinations of replica holders to only < File1,
File2, File3, File4 >: (n1, n4, n7), < File5, File6, File7,
File8 >: (n2, n5, n8) and < File9, File10, File11, File12 >:
(n3, n6, n9). This means a file’s replica can only be stored in
any of the three combinations of nodes. As a result, only
three cases can cause data loss, leading to a probability
of 3/84 = 3.6% for data loss, which is much smaller
than the probability in the random replica placement. But
the expense of data loss is higher, which is 4 files in this
example. In front of pervasive correlated failure, wireless file
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Fig. 5: Different replica placements.

sharing systems prefer to use the high number of impacted
files to achieve the low probability of data loss event.

Limiting the combinations of replica holders aside, in
file replication, file popularity also needs to be considered
when creating replicas to maximize the average file avail-
ability in the system. Generally, the more popular a file is,
the more replicas of the file should be created. Therefore,
MobileCopy’s data loss resistant and popularity aware file
replication method jointly consider both objectives in file
replication.

Recall that each community conducts file replication
independently. Therefore, we present the file replication
process in one community as an example to explain the
proposed file replication method. We first introduce how
to collect file popularity and how to determine the number
of replicas for a file based on its popularity. Then, we
present how to limit the combinations of replica holders
when different files have different number of replicas.

Popularity-aware Replica Number Determination. For
each file in its community, the head needs to calculate its
querying frequency from its own community to determine
the number of replicas of this file. Each node keeps track of
the querying frequencies of its files from its own community
and reports this information to the head when moving close
to it. After a certain period of time, the head can know the
distribution of file popularity in its community. The head
node then groups all popularity values into several ranges,
and each range is associated with a replica number. Then, it
determines the number of replicas (denoted by Rf ) for a file
(denoted by Ff ) based on its popularity (denoted by Pf ).

Specifically, the head first determines the maximal num-
ber of replicas allowed for a file, denoted by M . We will
explain how to calculate M later on. The head then sets
M popularity thresholds, denoted by Tr (r = 1, 2, ...,M ).
Then, for file Ff , its number of replicas equals Rf = r if
Tr ≤ Pf < Tr+1, where r ∈ [0,M ]. Note that T0 and TM+1

are fixed to 0 and +∞, respectively, to include all possible
popularity values.

The values of M and Tr are determined based on the
popularity distribution, the total number of files and avail-
able storage resource in the community in order to ensure
that file popularities are evenly categorized into different
ranges and all replicas can be stored in the community. We
use a heuristic method to get these parameters. In detail,
the head estimates the number of files (ht) and the average
file size (sa) in its community. Then, since we will select M
thresholds that split file popularity evenly into the M + 1
ranges, the amount of storage occupied by files in the (r+1)-
th range (r = 0, 1, ...,M ) can be calculated as r ∗ ht

M+1 ∗ sa,
where r is the number of replicas for a file, ht

M+1 is the
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number of files in this range and sa is the average size of
a file for these files. We see that the files ranked higher have
more replicas. Finally, M should satisfy

M∑
r=0

r ∗ Nc

M + 1
∗ sa ≈ αS (1)

where S is the size of available storage in the community
and parameter α ∈ [0.5, 1) determines the percentage of
the available storage used for storing the created replicas.
A larger α will enable the file sharing system to have
more replicas but causes higher storage cost on participating
nodes, and vice versa. Thus, the value of α should be
set according to different implementation requirements on
storage availability. Nc is the total number of nodes in the
community. We can deduce a suitableM based on the above
equation. We then select thresholds Tr (r = 1, 2, ...,M ) so
that the file popularity falls into all ranges evenly.

Limiting Replica Holder Combinations. After
determining the number of replicas for a file, the head
node selects nodes in the community to hold replicas.
As indicated previously, it tries to limit the number of
candidate replica holder combinations that can be selected
to store the replicas of a file.

For this purpose, we can assign each node to a replica
holder combination with each set having M nodes, and
constrain the replicas of a file to a randomly selected combi-
nation. In this method, the most popular files will be repli-
cated to all nodes in a combination, which may lead to load
imbalance problem that some nodes become overloaded
while some nodes are underloaded in the community [20].
To handle this problem, we limit the number of possible
replica holders in a combination to M + t, where t is a small
integer (e.g., 1 and 2). Then, when a file with the highest
popularity is replicated to a combination, it can randomly
choose M replica nodes from M + t nodes. A larger t will
better balance the storage load of the nodes but may reduce
the storage usage efficiency, and vice versa. Thus, the value
of t should be set according to different implementation
requirements on storage efficiency constraint.

Specifically, MobileCopy splits Nc community nodes
into Ng = d Nc

M+te groups. The replica holders of each
file can only be selected from one group. Therefore, the
maximal number of combinations of replica holders for
file Ff is d Nc

M+te ∗
(M+t

Rf

)
, where Rf ≤ M is the number

of replicas for Ff . We use an example to demonstrate
the effectiveness of this proposed method. Suppose the
maximal number of replicas for a file (M ) is 3, t is set to
1, and the number of nodes (Nc) is 12. Nodes are split into
groups with size M + t = 4, as shown below

< n1, n2, n3, n4‖n5, n6, n7, n8‖n9, n10, n11, n12 >

Then, suppose we have a file to be replicated and the
number of replicas allowed for the file is 3. The head node
first randomly selects a group for the file and then randomly
selects 3 nodes in the group to hold the replicas. Therefore,
there are 3∗

(4
3

)
= 12 options to select replica holders for the

file.
On the other hand, if we place replicas randomly in the

community, the number of combinations of replica hold-
ers is

(Nc

Rf

)
. Since Nc is often much larger than M + t,

(Nc

Rf

)
� d Nc

M+te ∗
(M+t

Rf

)
. In the above example, the total

number of combinations of replica holders in the random
replica placement is

(12
3

)
= 220, which means that the

possibility of data loss is 220/12 = 18.33 times of that in
MobileCopy. Therefore, MobileCopy constrains the number
of the combinations of replica holders for each file, thereby
effectively preventing the probability of data loss under
correlated node failures.

In real-world implementations, we can further track the
failure event of each node during a certain time window
(e.g., 1 week). When arranging the replica holder combi-
nations, we always choose the nodes that never or rarely
fail together during the time window to form a group.
Since the options of selecting replica holders are further
constrained and the arranged candidate node combinations
have the lowest probability to fail simultaneously, the data
loss probability can be further reduced. A larger time win-
dow size results in a better observation of the failure events
of the nodes but constrains less on the selection of replica
holders, and vice versa. The time window size should be set
according to different implementation requirements on data
loss probability upper bound and maintenance cost.

Competition based File Replica Distribution. After
limiting the number of possible replica holder combinations,
the probability of node failure that will cause data loss has
been greatly reduced. But the combination of nodes is u-
niformly determined without considering the heterogeneity
of nodes’ capability in holding replicas and communication,
namely some nodes have larger storage and may meet more
nodes than the others. For the proper allocation of the file
replicas, we design a competition based replica distribution
scheme to differentiate the nodes’ heterogeneity in sufficing
file requests.

Generally, in addition to limiting the number of replica
holders by the file popularity, we set different priorities for
the replicas, which are jointly determined by the replica’s
popularity and size, so that they have to compete for the
nodes with serving capability matching their priority. In
MobileCopy, we use each node’s meeting ability (vk), which
is measured as the weighted information entropy (diversity)
[21] of the node’s contact frequencies with all the other
nodes that the node ever contacted (including the nodes
inside and outside the node’s community), to measure the
node’s file request service ability. More specifically, vk is
defined as:

vk = −
∑
i

fkipki log pki, (2)

where fki is node nk’s contact frequency with node ni. pki
is the ratio of fki over the sum of the contact frequencies
of all the nodes that node nk ever contacted. For example,
suppose nk’s contact frequencies with three other nodes are:
fk1 = 20, fk2 = 10, fk3 = 5. Thus, the ratios of each contact
frequency over the sum of the contact frequencies are: pk1 =
4
7 , pk2 = 2

7 , and pk3 = 1
7 . vk is calculated as −20 × 4

7 ×
log2

4
7 − 10× 2

7 × log2
2
7 − 5× 1

7 × log2
1
7 = 16.40. The more

nodes nk contacted and the higher contact frequencies that
the contacted nodes have, the higher vk will be.

Each node, say nk, periodically reports its meeting abili-
ty to the head node in its community. Then, when preparing
the candidate replica holders, the community head ranks
the nodes by their meeting ability in descending order, and
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partitions them into Ng = d Nc

M+te groups as in Equation (3),
which follows the same manner in limiting replica holder
combinations:

< G0‖G1‖ . . . ‖GNg−1 >

The lower the group id is, the higher meeting ability the
group of the nodes have.

Intuitively, the higher popularity a file has, the more fre-
quently it will be requested. Therefore, following the work
of Chen et al. [22], we define the priority value of a file Fi as
Pi =

√
qi, where qi denotes the file’s popularity. According

to the observations in [22], given the number of the replica
holders of file Fi is Ri

f , to achieve the minimum overall file
querying delay of the file, the sum of the meeting ability of

the replica holders of the file (denoted as Vi =
∑Ri

f

k=1 vk)
should be proportional to the file’s priority value, namely
Vi ∝ Pi. Since the candidate replica holders within a
community are split into several groups, we also partition
the popularity of the files into the same number of levels so
that the files can fit in the suitable group of nodes whose
capability matches the popularity of the files. Specifically,
the community head first determines the maximum and
the minimum values of the file priority, denoted as Pmax

and Pmin, respectively. As all the nodes in a community
are split into Ng groups, the interval of popularity between
neighboring groups can be determined as

P̂ =
Pmax − Pmin

Ng − 1
, (3)

We expect that the smaller the priority level id is, the higher
priority the file will have, namely the level of file priority
follows the same ordering manner of the groups. Therefore,
for a file with priority Pi, we define its corresponding level
of priority (P ′i ) as in Equation (4):

P ′i = dNg−1−
Pi − Pmin

P̂
e = d (Ng − 1)(Pmax − Pi)

Pmax − Pmin
e, (4)

Note that the file priority levels match the group ids (i.e.,
their values fall into the range [0, Ng − 1]). The community
head will try to let each file compete for the group of replica
holders whose meeting ability matches the file’s priority
level. For example, for the file with priority level 0, the
expected group for the file is G0. For illustration, Figure 6
demonstrates the process of the creation of a file replica in
MobileCopy. Specifically, suppose node ni needs to replicate
a file Fi. The community head firstly tries to replicate Fi

to the group of nodes whose meeting ability matches the
file’s priority. For example, suppose the priority level of Fi

is P ′i , it will first compete for the group of nodes whose id is
equal to P ′i . If the nodes within the targeted group still have
storage for creating new replicas, Fi wins the competition
and proceeds to creating replicas on its targeted group of
nodes. Otherwise, the file has to lower its expectation for
the meeting ability of nodes and repeats the competition
for the new expected group of nodes. Recall that the lower
priority the file has, the less replicas it can create. Thus,
the competition based file replica distribution method can
finally reach a balance between node storage overhead and
file popularity considering files with different popularity
levels and sizes.

Select one group 
by priority

File
Replica 
creation

Compete 
for the 
expected 
group

Failure

Lower the expected group level

Success

Fig. 6: Distribution of replicas.

Storage Limitation Consideration. It is possible that the
storage of some node(s) in a certain group is full, which
leads to the case that some extra file replicas cannot be
stored at anywhere. To solve this problem, MobileCopy
allows the nodes from other groups to temporarily help
store the extra file replicas. Specifically, when some node(s)
in a group, say Gi, have no storage space, the remaining
number of nodes in the group may not satisfy the number of
required replica for the file. Then MobileCopy allows Gi to
borrow some nodes with available storage from neighboring
groups (i.e., Gi+1 or Gi−1) to temporarily store the file
replicas that belong to Gi. That is, in addition to the file
replicas that belong to Gi+1 or Gi−1, the borrowed nodes
will also store the replicas that belong to Gi.

Even with such a design, it is still possible that the
storage of all nodes in a community is full. In MobileCopy,
when a replica must be stored on a node without available
storage, the node randomly drops some replica. Since
replicas are dropped with the same probability, the ratios
between the numbers of replicas of files with different
popularity remain unchanged. In other words, dropping
replicas randomly does not break the rule that the more
popular files have more replicas.

2.3 DHT-based File Replica Indexing

2.3.1 Distribution of Replica Placement Information
Since nodes often are sparsely distributed in DTNs, it may

not be easy for a requester to meet the requested file directly
even though it is replicated in the network. Therefore,
we need to design a scheme to efficiently maintain the
placement information of each file for easy access in file
searching. However, it is a non-trivial task. Firstly, a dis-
tributed method is needed to store the replicas’ placement
information since there is no central server or infrastructure
available in DTNs. Secondly, it is desirable to distribute
the placement information evenly in the network since the
storage and bandwidth on each individual node is often
limited. Thirdly, the placement information must be up-to-
date, which means that once the replicas of a file are creat-
ed, changed or deleted, the replica placement information
must be updated quickly and the file requesters can always
receive the correct placement information. To handle these
challenges, MobileCopy uses the distributed hash table (D-
HT) technique to distribute the placement information of
different files to different communities. DHT is well known
by its balanced information distribution [23]. For each file,
it is mapped to a community based on the consistency hash
value [24] of its name. The mapped community is the one
whose ID is equal to or follows the hash value. Then, the
replica placement information of the file is stored, updated
or deleted in the mapped community. Later on, when a
node requests for the file, it can follow the same process
to get the community that stores the file’s replica placement
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Fig. 7: Replica placement reporting.

information. As a result, any node in the network can know
where the replica placement information of its requested file
is stored.

Once the replica nodes of a file are determined in a com-
munity, the head in the community generates a hash value
by hashing the file name. Then, it identifies the community
whose ID is equal to or follows the hash value and for-
wards the replica placement information to this community
through the brokers. Each piece of replica placement infor-
mation assigned to a community will be stored in multiple
nodes that often stay in the community. This is to ensure
that such information has a high probability to be found in
the community even when nodes move constantly in DTNs.
To select such nodes, the head node in a community first
collects each community member’s staying probability (i.e.,
the portion of time a node stays in the community during
a unit time period). Then, it ranks community members in
descending order of their staying probabilities and takes the
top Ns nodes as the replica placement information storage
nodes. Ns determines the expected probability that at least
one storage node stays in the community when a file request
arrives. A larger Ns leads to a larger expected probability
but increases the storage overhead of the replica placement
information, and vice versa. Thus, the value of Ns needs to
be set according to different implementation requirements
on storage usage constraint. The head node also records
the IDs of these storage nodes to guide file requests in
file searching. The process of replica placement information
update and deletion is conducted in the same manner.

We use Figure 7 to illustrate the replica placement infor-
mation distribution process. In this example, suppose F1 is
mapped to community C3. Then, the heads in C1, C2 and
C4 report the replica placement information of file F1 in
their communities to C3. Thus the overall replica placement
information of F1 is aggregated in C3. This information is
further distributed to storage nodes in C3.

2.3.2 File Searching Priority based on Node Mobility
Throughput
Generally, the nodes have different levels of mobility in-
tensity, which is defined as the frequency of node move-
ment during a period of time, among communities. On
the one hand, the brokers, which have higher probability
of transiting among communities, are primarily responsible
for forwarding information between the communities, but
their availability cannot always be guaranteed. On the other
hand, the efficient retrieval of information is closely related
with the connectivity among communities. Each time the
replica placement information of the target file is obtained,
there will be several communities for the request to choose

C4C3

C2C1
H H

H H

B B

B

Hash(F1)=C3

Fig. 8: Search priority based on throughput.

from. To help selecting the community that is the most
efficient for retrieving the file replica, we assign priorities for
the communities based on their connectivity to the current
community of the request. As shown in Figure 8, Mobile-
Copy measures the amount of nodes moving from one com-
munity, say Ci, to another community, say Cj , to represent
the connectivity fromCi toCj . This metric indicates the data
transfer capacity between each pair of communities, namely
the “throughput” of communication for the cases of physical
wired or wireless links. In MobileCopy, we use the term
“node mobility throughput” to represent this metric, which
is defined as the number of nodes that transit between
two communities during a period of time (e.g., 10min).
Thus, suppose the current community of the request is Ci,
MobileCopy uses the node mobility throughput from Ci to
each of the other communities, to determine the priority of
file searching.

Since the retrieval of replica placement information and
the retrieval of replicas require at least two transits (i.e.,
one transit to the holder, another transit back to the origin
node of the request), we care about the round-trip mobility
throughput between communities. For community Ci, we
use Sij to denote the number of nodes that move out
from Ci to Cj during a period of time, and Sji to denote
the number of nodes that move into Ci from Cj during
the same period of time. The updated round-trip mobility
throughput is the average value of Sij and Sji. The head
of the community periodically updates its throughput to
community Cj by Equation (5).

Bnew
ij = βBold

ij + (1− β)Sij + Sji

2
, (5)

where Bnew
ij and Bold

ij represent the adjusted throughput for
the next unit period of time and the measured throughput
for the most recent unit period of time, respectively. β is the
parameter weighting the importance of the newly measured
throughput and the previous throughput. A larger β means
the most recently measured throughput has more impact in
the adjustment but lead to less sensitive to the throughput
change, and vice versa. Thus, the value of β should be set
according to different implementation requirements on file
search efficiency.

After the head of Ci has determined the nodes’ mobility
throughput to all other peer communities, it ranks the peer
communities by their measured throughput in descending
order, and maintains the result as shown in Table 1. Then,
the process of file retrieval will be started from the commu-
nity with high node mobility throughput to the community
with low node mobility throughput successively until the
requested file or information is retrieved.
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TABLE 1: Node mobility throughput table maintained by a community
head.

Community ID Measured throughput
2 20
3 15
4 6
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Fig. 9: Finding replica placement information.

2.3.3 Replica Placement Information Assisted File Search-
ing
File searching can be completed efficiently in two steps.

Firstly, the file requester finds the replica placement infor-
mation of the requested file (i.e., ID of replica holders).
Secondly, the file requester locates a replica of the requested
file based on the placement information obtained.

Finding the Placement Information. This step is similar
to the replica placement distribution process. When a node
in community Ci requests for a file, it forwards the request
to the head in the community. The head node first checks
whether the replica of the file exists in some nodes in local
community. If yes, the requester can learn the replica place-
ment information directly from the head. Under the case
that there is no file replica in local community (e.g., the local
community only has a few requests for the file so the replicas
of the file are stored in other communities), the requester
will ask the head for the communities that have the file
replicas. Specifically, the head node hashes the file ID to
know the community that stores the file’s replica placement
information, say Ck. Then, the head forwards the request
to the broker for Ck. After the head node in Ck receives the
request, it responds the replica placement information of the
requested file back to the head of Ci through brokers. The
head of Ci then forwards the information to the requester.
Such a process can be illustrated by Figure 9. “None” in
the figure means that the node no longer has the replica. In
this example, the head in the request’s community C1 firstly
checks whether it has the replica placement information of
file F1 locally. If such information cannot be found in C1, the
head calculates the DHT hash value of the file, which is 3.
Then, a broker carries the request to C3. Finally, the head in
C3 responds with the replica placement information of file
F1.

Locating the Requested File. With the replica placement
information of the requested file, the requester knows the
holders of the file’s replicas. Meanwhile, the requester also
knows the node mobility throughput from the community
head. Then, it can schedule searches according to the node
mobility throughput to communities containing the file and
the number of replicas of the file in each community. A repli-
ca holder in the community with the highest node mobility
throughput has the highest priority to be selected as the
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Fig. 10: Searching file.

target node to send the request. The requester uses the DTN
routing algorithm to send the request (along with other
replica holder information) to the target node. In the case
that the target node no longer has the replica, the request is
forwarded to other replica holders in the same community.
If all other replica nodes fail though the probability is low,
the forwarding process iterates.

Figure 10 shows an example on file searching. From the
context of Figure 9, the requester in C1 has known that the
replicas of F1 are originally stored by n2 in C1, n3 in C2,
n5 in C3 and n9 in C4. Since n2 in the requester’s original
community and n5 in the replica placement information
node’s community no longer have the replica, the forwarder
then transfers the request to n3 in C2 in the next step
because it is a neighbor community and contains a replica
of F1. In this case, for files partially lost, as long as there’s
node holding the replica in some community, the file can
be recovered. Besides, correlated failure generally happen
among nodes belonging to the same community. Therefore,
the total loss of data will only happen in the cases that the
replica holders in all communities suffer from correlated
failure simultaneously.

3 PERFORMANCE EVALUATION

We conducted trace-driven experiments based on the
DART [19] and the DNET [25] traces. The details of the
datasets are presented as follows.

Dartmouth Campus Trace (DART). DART is a 119-day
record for the WLAN Access Point (AP) association activ-
ities of wireless devices carried by students on Dartmouth
College campus during the period from Nov. 2, 2003 to Feb
28, 2004. To make the trace fit our analysis, we normalized
the movement of the devices to buildings, and numbered
the buildings as landmarks. We also filtered out nodes with
few occurrences (<500) or short connections (<200s), and
merged repeated records. Finally, we obtained 320 nodes
and 159 landmarks.

DieselNet AP Trace (DNET). DNET is a 20-day AP asso-
ciation record for the movement of buses in the downtown
area of UMass during the period from Oct. 22, 2007 to Nov.
16, 2007. In the collection of the DNET trace, each bus is
equipped with a Diesel Brick that constantly scanned the
surrounding area for available AP connections, and a GPS
to record its coordinates. Since some connections are not
recorded by the known APs, we filtered out nodes with few
occurrences (<50) from the trace. The APs that are within
certain distance (<1.5km) to each other are merged into one
landmark. Finally, we obtained 34 buses and 18 landmarks.
The features of the two traces are summarized in Table 2.
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TABLE 2: Characteristics of mobility traces.

DART DNET
# Nodes 320 34
# Sub-areas 159 18
Duration 119 days 20 days
# Transits 477803 25193
# Transits per day 2401 1257

Each node originally holds 100 files for file sharing. Each
file has the same size of 1KB, and each node has an available
storage of 300KB. According to the analysis results of [26],
the Zipf distribution with the Zipf parameter of 0.7 best
models the distribution of file popularity in DHT-based file
sharing systems. Therefore, in the evaluation, we set the
file popularity follows the Zipf distribution with the Zipf
parameter equals to 0.7. Then, the request frequency of each
file was set based on its popularity, which is measured as
the number of requests for the file that occur during a
unit period of time. The distribution of file replicas and
related indexing information needs a period of time for
initialization. Since students in DART move less frequently
and slower than buses in DNET, the initialization in DART
needs more time than that in DNET. We set the initialization
time period to 30 days for DART and 2.5 days for DNET,
during which nodes collect information for file placement
and receive file replicas from other nodes. After the initial-
ization, file requests are generated based on the search rate.
The search rate is defined as the number of file requests
generated in each generation interval, which is 1 day for
DART and 4 hours for DNET. The expiration TTL (Time-To-
Live) for a file request was 4 hours and 2 hours in DART
and DNET, respectively.

With each device carrier as a node, and the contact
records between these nodes as the edges, of which weight
is determined by the number of contacts between each pair
of the nodes throughout the traces, we formulate a contact
graph for DART and DNET, respectively. Through maxi-
mization of modularity [27], for DART, the nodes are parti-
tioned into 22 communities, with each community having 15
nodes in average, and for DNET, the nodes are partitioned
into 3 communities, with each community having 12 nodes
in average. In determining the node mobility throughput
among communities, the time period for measurement is
10min. To find the best values of t and the window size for
calculating node failure probability, we vary each variable
within a certain range (e.g., [1, 5] for t and [3 days, 14
days] for window size) and test different combinations of
the values in the data loss experiment. Specifically, we use
each combination to simulate the data loss experiment for
30 days. We find t = 2 and window size = 7 days is the
best combination, after which the increasing rate of data loss
probability significantly drops down. Similarly, we also vary
the values of Ns, α and β and test different combinations of
the values in the file searching experiment for 48 hours. We
find the combination of Ns = 3, α = 0.73 and β = 0.61
results in the highest success rate.

3.1 Data Loss Resistance

We first evaluate the data loss resistance performance of
MobileCopy in comparison with Random and Uniform. Ran-
dom places replicas on randomly selected nodes and follows
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Fig. 11: Data loss probability with different node failure probabilities.

the same method as in MobileCopy to determine the number
of replicas for each file based on its popularity, which is
the usual replica placement scheme used in mainstream
wireless file sharing designs [3], [5], [22]. Uniform randomly
chooses the replica holders and creates equal number of
replicas for each file, which corresponds to methods without
considering file popularity in determining the number of
replicas [4].

We evaluate the performance from two perspectives: da-
ta loss probability under various percentages of concurrent
failure nodes and data loss probability under various sizes
of nodes in a group. The percentage of failure nodes deter-
mines the scale of correlated node failures, and the number
of nodes in a group determines the maximum number of
combinations of replica holders for each file in a community.
The percentage of failure nodes ranges from 10% to 100%,
the number of nodes in each group ranges from 4 to 10,
and their default values are 30% and 5, respectively. We ran
the experiment for 1000 times on DART and observed data
availability of each file in the end. The probability of data
loss is calculated by the percent of experiments in which at
least one file is lost.

In Figure 11, “(< x replicas)” means that a file can
maximally generate x replicas in a community and “(= x)”
means that each file generates x replicas. We find that the
data loss probability of Random is 100% when the per-
centage of failure nodes is larger than 20% regardless of
the maximum number of replicas of a file. However, for
MobileCopy, when the percentage of failure nodes is 20%,
the data loss probability is smaller than 20%. When the
percentage of failure nodes increases to 40%, the data loss
probability is 60% when the maximum replica number is
5. We also find that with the increase of the maximum
number of replicas, the data loss resistance of MobileCopy
increases. This is because when more replicas are created,
a file can tolerate more failure holders. For Uniform with 5
replicas, when the percentage of failure nodes is 60%, the
data loss probability is around 20%. However, for Uniform
with 2 replicas, when the percentage of failure nodes is 20%,
the data loss probability is higher than 80%. This is because
that generating more replicas for each file can significantly
increase the availability of all files but the storage cost of
Uniform with 5 replicas is 74.5% higher than that of Mobile-
Copy with < 5 replicas. For fair comparison, we let Uniform
use the approximate storage cost as that of MobileCopy with
5 replicas so that each file in Uniform can only have 3 replicas
(denoted by “Uniform (= 3)”). From Figure 11, we can see
that the data loss probability of Uniform with 3 replicas is
only slightly lower than that of Uniform with 2 replicas
and higher than all the results of MobileCopy. The result
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illustrates that more replicas per file leads to higher data
loss resistance but at the cost of redundant replicas for low
popularity files.

In Figure 12, “failProb=x" means that the percentage of
failure nodes is set to x. The curves of Random with different
node failure probabilities overlap with each other over all
node failure probabilities, which means there’s always data
loss under various percentages of failure nodes. We find
that the data loss probability of MobileCopy is around 90%
when failProb=0.4 and below 15% when failProb=0.2 or 0.3.
We also see that with the increase of the number of nodes
in each group, the data loss probability decreases under
a certain node failure probabilities. This is because when
the group size increases, the number of groups decreases,
leading to fewer combinations of replica holders and hence
lower data loss probability.

For Uniform, the data loss probability is below 20%
when failProb=0.2 or 0.3. When failProb=0.4, the data loss
probability of Uniform is 100%. In contrast, under these node
failure probabilities, the data loss possibility of Random is al-
ways 100% regardless of the number of nodes in each group.
Such results demonstrate the strong data loss resistance of
MobileCopy.

3.2 File Searching Efficiency

In order to show the effectiveness of the DHT-based
file replica indexing method, we further compare the file
searching performance of MobileCopy and two represen-
tative systems: the MOPS publish/subscribe system [12]
and the SPOON file sharing system [11]. To demonstrate
the effectiveness of competition based file replication and
node mobility throughput in increasing file searching per-
formance, we also extend MobileCopy with considering file
holder competition in distributing replicas and node mobil-
ity throughput in file searching, which is named as Mobile-
CopyAdvanced. In MOPS, brokers from different communi-
ties exchange information about the files and the number
of replicas of each file existing in their own communities
when they encounter each other. In order to maximize the
probability of successfully finding files, we let MOPS search
the community with the maximal number of replicas of the
requested file. Specifically, in file searching, a file requester
forwards its request to the broker of its community (Ci),
which further forwards the request to the broker of the
community (Cj) that has the maximal number of replicas
of the requested file. When the broker meets a file holder,
it fetches the file and then forwards it back to the broker of
Ci, which forwards the file to the requester. In SPOON, a
file request is always forwarded to nodes that have higher

meeting frequency with the target node than previous carri-
er. If such a node cannot be found, the request is forwarded
to nodes that have higher meeting frequency with others.
This method can forward a request to a file holder since
nodes with similar file interests tend to gather together. For
fair comparison, the total numbers of file replicas generated
by all the above methods are the same.

We measured the following metrics in the experiments.

• Success rate: The percentage of file requests that suc-
cessfully reach their target files within search TTL.

• Average delay: The average time (in seconds) spent
by file requests to reach their target files. Note that
the time spent by unsuccessful requests, which is
the search TTL, is also considered in calculating this
metric.

• Average search length: The average number of for-
warding hops experienced by a file request. Note
that the search length of unsuccessful requests is also
considered.

We conducted two experiments for evaluation. In the
first experiment, we varied the search rate from 20 to 70.
In the second experiment, we varied the search TTL of each
request from 18 hours to 33 hours in DART and from 1 hour
to 6 hours in DNET.

3.2.1 Success Rate
Figure 13(a) and Figure 14(a) show the success rates of the

three algorithms under different search rates in DART and
DNET, respectively. Figure 15(a) and Figure 16(a) show the
success rates of the algorithms under different search TTLs
in the experiments with DART and DNET, respectively. In
these figures, we find that for both traces, the success rates
follow: MobileCopyAdvanced>MobileCopy>SPOON�MOPS.
MOPS always has the lowest success rate under different
search rates and TTLs. With the information exchanged be-
tween brokers, the community with the maximum number
of the replicas of the target file (i.e., target community) can
be known. However, the broker of the target community
does not know the exact file holder, but can only find the file
by occasional contact, rather than actively forwarding the re-
quest directly towards the target. Therefore, the request can
only statically wait on the broker of the target community,
which results in the lowest success rate for MOPS.

SPOON lets file requests be forwarded to nodes with
higher meeting frequency with the file holders. Once at-
tached to such a node, the request is probable to meet the
replica of its target node during movement. This means that
SPOON is likely to direct the request to the file holders
through multiple contacts with their frequently met nodes.
Therefore, it has higher success rate than that of MOPS.
However, file requesters still have no clue about what nodes
hold the replicas of their target file. In the case that a file
request is generated in a community where few nodes met
the target file holder before, SPOON may result in many
redundant forwarding hops, which results in SPOON’s suc-
cess rate to be lower than that of MobileCopy.

In MobileCopy, the file requester can know the holder
of the file placement information through DHT at the be-
ginning of search. Then the request is forwarded through
the broker to the community and learns which nodes store
the replica placement information from the head. Then,
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(c) Average search length.

Fig. 13: File search performance with different search rates using the DART trace.
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Fig. 14: File search performance with different search rates using the DNET trace.

the requester knows the replica holders and schedules file
searching. This is because the file replicas are distributed
through node competition based on their meeting ability,
consequently the request can be forwarded through the
relay of nodes that frequently meet the file holder. Since in
each phase of the file search process, the request has a clear
target, it can reach its target file efficiently, leading to a high
success rate.

In MobileCopyAdvanced, on the one hand, through the
competition for the node storage of the expected group
of nodes, the files with relatively higher popularity have
been held by the nodes with higher meeting ability. On the
other hand, the popular files attract more requests than the
other normal files. Thus, the majority of the requests are
fulfilled within their TTLs. Additionally, before the broker
transferred the request, the node mobility throughput gives
hints to the request which community can be reached more
easily. This accelerates the delivery of the requests and the
retrieval of the target files. Therefore, MobileCopyAdvanced
built based upon MobileCopy achieves the highest success
rate over the other methods.

3.2.2 Average Delay

Figure 13(b) and Figure 14(b) show the average delays of
the three algorithms under different search rates in DART
and DNET, respectively. Figure 15(b) and Figure 16(b)
show the average delays of the algorithms under
different search TTLs in DART and DNET, respectively.
We can see that in DART, the average delays follow:
MOPS�SPOON>MobileCopy>MobileCopyAdvanced,
and in DNET, the results follow: MOP-
S�SPOON>MobileCopy≈MobileCopyAdvanced

As mentioned previously, MOPS simply forwards the
request to the community with the highest number of the
target file’s replicas. After arrival, the request waits for the
encounter with the nodes holding its target file, which con-
sumes much waiting time. Therefore, MOPS generates the
highest average delay. In SPOON, the request is forwarded
to nodes that frequently meet the file holders. The request
can gradually reach their target files, leading to much lower
delay than that of MOPS. However, file requests may be
generated in communities far away from the target files.
As a result, they may not be able to find the nodes that can
frequently meet the file holders, leading to many forwarding
hops in SPOON. In MobileCopy, the request firstly identifies
the community with the replica placement information, and
then the details of the file replica holders. With explicit
target nodes, the file request is efficiently forwarded to the
target node through brokers and active nodes, resulting
in the least delay. As for MobileCopyAdvanced, since the
competition based file replication method has distributed
the most frequently requested files to the frequently moving
nodes, so the request has more opportunity to reach the
holders of its target file, thereby reduces the time spent in
file searching. Meanwhile, the node mobility throughput
utilized in MobileCopyAdvanced can also reduce the time
wasted in searching by directing the request to the com-
munity with higher mobility throughput to the request’s
current community. As a result, the average delay of Mo-
bileCopyAdvanced is lower than that of MobileCopy.

3.2.3 Average Search Length

Figure 13(c) and Figure 14(c) show the average search
lengths of the three algorithms under different search rates
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(b) Average delay.
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(c) Average search length.

Fig. 15: File search performance with different TTLs using the DART trace.
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(c) Average search length.

Fig. 16: File search performance with different TTLs using the DNET trace.
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(a) Success rate with DART trace.
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(b) Success rate with DNET trace.
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(c) Avg. delay with DART trace.
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Fig. 17: Effectiveness of considering file popularity in file replication and files’ competition for storage resource in improving data availability.

in DART and DNET, respectively. Figure 15(c) and Fig-
ure 16(c) show the average search lengths of the algorithms
under different search TTLs in DART and DNET, respective-
ly. We can see that for both traces, the search lengths follow:
MOPS<MobileCopyAdvanced<MobileCopy<SPOON.

Recall that the search length is defined as the number of
forwarding hops a file request experiences during the file
search process. MOPS has the lowest search length since
the broker passively waits for file holder, so the number of
hops that the request experiences is low. In SPOON, since
requests are not directly forwarded to the file holder, more
transfer hops are needed than that of MobileCopy, which
results in the highest search length. Since in MobileCopy,
the requests are always proactively forwarded to the file
holders, and the request has to spend some hops in finding
the replica placement information of its target file through
multiple hops between different communities, it has longer
search length than MOPS. As for MobileCopyAdvanced, file

searching based on node mobility throughput saves many
transits spent on retrieving the file replica placement in-
formation and looking for the holder of the requested file.
Therefore, it results in shorter search length than that of
MobileCopy and SPOON. But the average search length of
MobileCopyAdvanced is longer than that of MOPS in both
traces. This is because the requests in MobileCopyAdvanced
need to transit several hops to their target file holders rather
than waiting for the opportunistic encounter with the file
replica holder as in MOPS.

3.3 Data Availability
To illustrate the effectiveness of considering file popu-

larity in file replication, and files’ competition for storage
resource by their popularity in improving data availability,
we compare the file search performance of MobileCopyAd-
vanced and MobileCopy with that of Random and Uniform.
In the experiment, MobileCopy and MobileCopyAdvanced can
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generate maximally 5 replicas for a file per community, and
2 replicas for each file in average. Therefore, in Uniform,
each file uniformly generates 2 replicas in each community.
Random also generates replicas according to the popularity
of files like MobileCopy, but randomly selects the holders.
Figure 17(a) and Figure 17(b) show the success rates of the
four algorithms under different TTLs in DART and DNET,
respectively. Figure 17(c) and Figure 17(d) show the aver-
age delays of the four algorithms under different TTLs in
DART and DNET, respectively. We can see that the success
rates follow MobileCopyAdvanced > MobileCopy ≈ Random
> Uniform in both traces, while the average delays follow
Uniform > MobileCopy ≈ Random > MobileCopyAdvanced
in DART, but follow Uniform > MobileCopy > Random ≈
MobileCopyAdvanced in DNET.

Although as indicated in Section 3.1, the data loss resis-
tance ability of MobileCopy against correlated node failure
is much stronger than that of Random, the file search per-
formance of MobileCopy is similar to that of Random. This is
because when disseminating the replicas, MobileCopy does
not consider the heterogeneity of the nodes in contacting
the others. Even if the number of replica holder for popular
files is larger than that of normal files, the reachability of
these file replicas is not significantly better than Random.

In contrast, the file search performance of MobileCopyAd-
vanced is significantly better than those of the other three
methods, especially for DART. This is due to the selection of
file replica holders caused by the competition for node stor-
age resource among files, and the guidance of node mobility
throughput in retrieving the target files. The results verify
that MobileCopyAdvanced can achieve higher file availability
and search efficiency than the others. The only exception
is the average delays in DNET. This is because compared
with DART, DNET has much fewer nodes (i.e., buses). Each
node moves on its respective fixed route according to a
scheduled timeline, so the meeting ability of the nodes is
similar between each other, which degrades the advantage
of MobileCopyAdvanced in distributing file replicas and di-
recting file search. This phenomenon in turn confirms the
feasibility of MobileCopyAdvanced for mobile networks with
large number of nodes and social contact features.

3.4 Effectiveness of Components

In this section, we take a deeper analysis on the effectiveness
of the respective component of MobileCopy in improving
file searching performance and resisting data loss through
measuring the metrics (i.e., success rate, the number of lost
data) with and without using the component. In each of the
following figures, the top figure is for DART and the bottom
figure is for DNET.

3.4.1 Competition based File Replication
MobileCopy’s competition based file replication aims to im-
prove the file searching performance through disseminating
the file replicas to nodes with proper meeting ability. To
verify the effectiveness of this component, we measured
the Cumulative Distribution Function (CDF) of the request
success rate of all nodes with and without competition in
file replication, respectively, which is shown in Figure 18.
We can see that only about 30% of the nodes have request
success rate higher than 80% without competition, and 50%
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Fig. 18: Effectiveness of competition based file replication.
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Fig. 19: Necessity of constraining replica holders.

of the nodes have request success rate higher than 80% with
competition in DART, while 50% of the nodes have request
success rate higher than 88% without competition, and al-
most 80% of the nodes have request success rate higher than
88% with competition in DNET. This is primarily because
the meeting ability fully considers both the nodes’ contact
frequency with others and the diversity of their contacted
peers, which enables the files to be distributed to the nodes
that can frequently meet with various nodes. This obser-
vation confirms the effectiveness of utilizing competition
based file replication in increasing file search performance.

3.4.2 Constraining File Replica Holders
Deliberately constraining the file replica holders to limited
combinations of the nodes can greatly reduce the probability
of node failure combinations that will cause file loss under
correlated node failure. To verify the effectiveness of this
component exclusively, we ran the file loss test for 1,000
times with a node failure probability of 50% in each test.
Each node has 100 files to be replicated and placed in
the system. Then we measured the number of lost files
in each test for the case with constrained replica holders
and the case with unconstrained replica holders, and drew
the results as shown in Figure 19. We see that 50% of the
tests suffer from more than 65 file losses with unconstrained
replica holders, and less than 10% of the tests suffered from
no more than 5 file losses with constrained replica holders
in DART, while 50% of the tests suffer from more than 570
file losses with unconstrained replica holders, and 50% of
the tests suffer from no more than 100 file losses with con-
strained replica holders in DNET. Obviously, constraining
the combination of replica holders can greatly reduce the
probability of file loss against correlated node failure.

3.4.3 File Popularity
Considering file popularity can not only help arrange the
number of replicas for this file according to its request
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Fig. 21: Importance of mobility throughput.

frequency, but also assign the replicas to the holders with
proper service ability matching the file’s popularity. To
demonstrate the improvement of file search performance
brought by considering file popularity, we measured the
CDF of the request success rate of all nodes with and
without considering file popularity, respectively, which is
shown in Figure 20. We see that about 50% of the nodes
have success rate higher than 80% without considering file
popularity and about 60% of the nodes have success rate
higher than 80% with considering file popularity in DART,
while about 30% of the nodes have success rate higher than
90% without considering file popularity and about 70% of
the nodes have success rate higher than 90% with consider-
ing file popularity in DNET. Note the network size of DNET
is much smaller than that of DART, and the buses in DNET
drive on their respective determined routes by schedules,
so the nodes in DNET contact more frequently and steadily
than those in DART. This shows that the file popularity scor-
ing of MobileCopy effectively enables the more frequently
requested files to have more replica availability. In summary,
considering file popularity in determining the number of file
replicas is crucial for file retrieval performance and storage
overhead balance of wireless file sharing systems, especially
for wireless networks with a small size.

3.4.4 Node Mobility Throughput
MobileCopy aims to use node mobility throughput to guide
the retrieval of the file replica from the community that can
be most easily reached by the request. To demonstrate the ef-
fectiveness of this component, we measured the CDF of the
request success rate of all nodes with and without following
node mobility throughput in file searching, respectively.
Figure 21 shows the measurement result. We can see that
70% of the nodes have success rate higher than 60% without
considering node mobility throughput and 80% of the nodes
have success rate higher than 60% with considering mobility
throughput in DART, while 80% of the nodes have success

rate higher than 80% without considering node mobility
throughput and more than 90% of the nodes have success
rate higher than 80% with considering mobility throughput
in DNET. Therefore, node mobility throughput is crucial for
increasing the file retrieval efficiency of wireless file sharing
systems.

4 RELATED WORK

File Replication in Distributed Wireless Networks The
topic of file replication in distributed wireless networks has
been extensively studied. The general method is to tradeoff
the redundancy of files with resource to increase file avail-
ability efficiently. To increase the data availability in mobile
ad hoc networks, Hara et al. [4] proposed three replica allo-
cation methods. The methods determine the necessity of file
replication or deletion based on the file access frequencies
of individual nodes, neighbor nodes, and a group of stably
encountering nodes, respectively. The work in [3] proposes
to cache popular files on the intersection nodes on the path
of requests for these files, which can be used to satisfy future
file requests. Though it is effective for popular files, it fails to
utilize all storage space in nodes other than the intersection
nodes. Crawford et al. [5] proposed to estimate the evolution
of file popularity by analyzing historical heterogeneous
contact and request patterns of the devices, and designed
a greedy algorithm based method to determine the number
of files according to the estimated file popularity. Guo et al.
[28] proposed to divide nodes into groups according to their
social relationship and determine the optimal number of file
replicas for each group by formulating and solving a con-
vex optimization problem. In [6], nodes predict future file
requests based on collected sematic information from their
group members and create replicas accordingly. Echeverría
et al. [29] proposed a delay-tolerant data sharing system that
combines delay-tolerant protocol with a publish/subscribe
mechanism to enable “many to one” information sharing.
The PCS algorithm [22] considers both storage and meet-

ing ability as resources for replica creation. It models the
relationship between the average file access delay and the
resource allocation to deduce how to allocate resources for
files to create replicas so that the average file access delay
is minimized. Chen [30] investigated how to ensure that
each data can be accessed within at most k hops in mobile
networks by creating file replicas. It copies a file to the right
place that needs a replica so that “each data can be accessed
within k hops" is still satisfied. In spite of many works on
file replication in DTNs, there has been no work that tries to
reduce data loss in correlated failures, which is common in
wireless networks.
Popularity based File Replication and Sharing In addi-
tion, although in different scenarios, popularity based file
replication and sharing has been widely explored. Liu et
al. [31] designed a VoD system that uses coding-aware and
replacement strategy using Reed-Solomon codes to enhance
video availability. Liu et al. [32] proposed online storage
systems that utilize peer assistance to reduce bandwidth
and cost for online storage providers. Dai et al. [33] pro-
posed a collaborative caching mechanism to achieve the
traffic locality in P2P network in the context of collaborative
Internet Service Provider. Liu et al. [34] analyzed the possi-
bilities and trade-offs concerning server design in a hybrid
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environment. Tang et al. [35] designed a method to boost
the sync performance of personal cloud storage services
by leveraging multiple available clouds to maximize the
parallel transfer opportunities.

5 CONCLUSION

Previous file replication methods aiming at improving data
availability in DTNs neglect correlated node failures, which
can cause serious data loss and low data availability. We
propose MobileCopy to increase the data availability in
correlated node failures in DTNs. MobileCopy is designed
for community-based file sharing systems and conducts file
replication within each community independently. A failure
node set (FNS) is a set of nodes whose simultaneous failures
cause a file loss, i.e., a set of replica nodes of a file. Thus, Mo-
bileCopy aims to reduce the data loss by reducing the num-
ber of FNSs in the system. To this end, it groups community
nodes and constrains the replicas of many files to the nodes
in one group, and determines the number of replicas of a
file based on its popularity in order to increase the average
data availability for file requests. Further, MobileCopy has
a DHT-based file replica indexing method, which provides
an efficient way to update and fetch replica placement
information of a given file. Thus, a file requester can quickly
learn the replica nodes of a given file in file searching.
Additionally, we improve the file searching performance
of MobileCopy with competition based file replication and
node mobility throughput based file searching. Extensive
trace-driven experiments show that MobileCopy is robust
against correlated node failures and efficient in file sharing
in comparison with previous methods. Additional in-depth
analysis of the components also verifies their respective
effectiveness in improving file searching performance and
resisting data loss in correlated node failure. For files that
do not have the highest popularity, their number of replicas
is less than the number of nodes in a group, which leads
to several different FNSs. In our future work, we will study
how to constrain the number of FNSs of these files to reduce
data loss rate.
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