

MobileCopy:
Resisting Correlated

Node Failures to
Enhance Data

Availability in DTNs

Authors: Li Yan, Kang Chen, Haiying
Shen and Guoxin Liu

Dept. of Electrical and Computer Engineering
Clemson University, SC, USA

1

• Introduction

• Related work

• Problem depiction

• Design of MobileCopy

• Evaluation

• Conclusion

Outline

2

Introduction
• Nodes form delay tolerant networks in distributed

manner

– Without infrastructure for communication

• Nodes move autonomously in the network

– Example 1: probing sensors on battlefield

– Example 2: rescue devices in disaster area

– Example 3: mobile devices held by people on campus

3

Introduction (cont.)
• File sharing in DTN is important

– Nodes need to share their captured events

– Locate malicious nodes timely

– Nodes need to efficiently find the interested file

• Cascaded node failure in DTN is common

– Failure of one node may result in overload to nearby nodes

– Malicious nodes can infect nearby nodes

– Power outage leads to correlated node failure

4

Related Work

• Increase file availability by replication [TMC’06,
MSN’13]

– Create or delete file replicas to prevent data loss with
reasonable cost

– Differentiate nodes by carrying ability

• Popularity based methods [ICNP’11, Mobilware’09]

– Determine file replicas based on access frequency of files

– Consider storage and mobility of nodes

• There is no work that tries to reduce data loss in
correlated node failures, which is common in
wireless networks

5

Problem Depiction
• Previous methods: random replication

– A failure node set (FNS) is a set of nodes whose simultaneous
failures cause a file loss

– The probability that a file is replicated on any FNS is uniformly
distributed

• Drawback of random replication
– When the number of files is large enough, the failure of any

FNS will result in the loss of some files

– Distributed nature of DTNs makes file status update difficult

– Invalid requests for lost files degrade the efficiency of file
sharing in DTNs

6

Problem Depiction
• Random replication

– File1:(n1,n7,n9), File2:(n1,n2,n4), File3:(n1,n4,n7),

– File4:(n1,n7,n8), File5:(n2,n3,n4), File6:(n2,n4,n7),

– File7:(n2,n5,n8), File8:(n5,n6,n9), File9:(n3,n5,n8),

– File10:(n3,n5,n6), File11:(n6,n8,n9), File12:(n3,n6,n9)

– Probability of data loss: 12/84=14.3%

• Constrained replication
– <File1,File2,File3,File4>:(n1,n4,n7),

– <File5,File6,File7,File8>:(n2,n5,n8),

– <File9,File10,File11,File12>:(n3,n6,n9)

– Probability of data loss: 3/84=3.6%

7

Random

Constrained

Problem Depiction
• Constrained replication in DTN is non-trivial

– No central server for determining candidate replica holder
combinations

– Delivering replicas to determined holders takes time in DTNs

– Accessing replica placement information is not easy

– Jointly considering file popularity and data loss reduction to
enhance data availability is challenging

8

Design: Network Model
• A DTN with 𝑛 nodes

– 𝑁𝑖, 𝑖 = 1,2,3,⋯ , 𝑛

• File sharing is based on community
– Nodes may have common mobility patterns

– Nodes with high meeting probability form one community

• Focus of MobileCopy
– File replication

– File replica indexing

9

Design: File Replication
• Different roles in a community

– Head: the node with the highest
centrality

• Maintain information of the
community distribution

• Conduct file replication

• Maintain replica placement
information in its community

– Broker: the node that frequently
visits other communities

• Transfer information between
communities

10

Design: File Replication
• Different roles in a community

– Head: the node with the highest
centrality

• Maintain information of the
community distribution

• Conduct file replication

• Maintain replica placement
information in its community

– Broker: the node that frequently
visits other communities

• Transfer information between
communities

11

Design: File Replication
• Inter-community file replication

– The head keeps track of the
querying frequency of each file

– The head determines which
community needs replica
dissemination

– The head asks broker for each
community to disseminate files

12

Design: File Replication
• Inter-community file replication

– The head keeps track of the
querying frequency of each file

– The head determines which
community needs replica
dissemination

– The head asks broker for each
community to disseminate files

13

Design: File Replication
• Inter-community file replication

– The head keeps track of the
querying frequency of each file

– The head determines which
community needs replica
dissemination

– The head asks broker for each
community to disseminate files

14

Design: File Replication
• Inter-community file replication

– The head keeps track of the
querying frequency of each file

– The head determines which
community needs replica
dissemination

– The head asks broker for each
community to disseminate files

15

Design: File Replication
• Popularity-aware replica number determination

– The head determines the number of replicas (Rf) for a file (Ff)
based on its popularity (Pf)

– Specifically, the head determines the maximal number of
replicas allowed for a file (M). The head selects M thresholds to
evenly split popularity into M+1 ranges

– The number of replicas in each range is r (r=0,1,…,M), then M
should satisfy

– Where Nc is the total number of nodes in the community. sa is
the average file size in the community. α determines the
percentage of the storage for replicas. S is the size of available
storage in the community.

16

Design: File Replication
• Limiting replica holder combinations

– For each file, we limit the number of candidate replica holders
to M+t (t is a small integer)

– Specifically, the head splits Nc community nodes into
𝑁𝑐

𝑀+𝑡

groups. The replica holders of each file can only be selected
from one group.

– Suppose M=3, t=1, Nc=12, the nodes are split as below

– Random replication has 12
3

= 220 possible combinations. While

MobileCopy only has 3 ∗ 4
3
= 12 possible combinations.

17

Design: File Replication
• Storage limitation consideration

– MobileCopy lets each node report to the head when its storage
becomes full

– The head excludes the nodes without available storage when
selecting holders for replicas

– When the storage of all nodes in a community is full, the target
node of the new replica randomly drops some replicas

– Dropping replicas randomly does not break the rule that more
popular files have more replicas

18

Design: Replica Indexing
• Distributing replica information

– MobileCopy uses the distributed hash
table (DHT) to distribute replica
placement information

– By hashing the file name, the head
identifies the community to report
the determined replica placement
information

– The replica placement information
will be stored in multiple nodes that
often stay in the community

19

Design: Replica Indexing
• Distributing replica information

– MobileCopy uses the distributed hash
table (DHT) to distribute replica
placement information

– By hashing the file name, the head
identifies the community to report
the determined replica placement
information

– The replica placement information
will be stored in multiple nodes that
often stay in the community

20

Design: Replica Indexing
• Distributing replica information

– MobileCopy uses the distributed hash
table (DHT) to distribute replica
placement information

– By hashing the file name, the head
identifies the community to report
the determined replica placement
information

– The replica placement information
will be stored in multiple nodes that
often stay in the community

21

Design: Replica Indexing
• Distributing replica information

– MobileCopy uses the distributed hash
table (DHT) to distribute replica
placement information

– By hashing the file name, the head
identifies the community to report
the determined replica placement
information

– The replica placement information
will be stored in multiple nodes that
often stay in the community

22

Design: Replica Indexing
• Finding placement information

– Upon the request for a file, the head
first checks whether the replica
holder of the file exists in local
community

– Otherwise, the head hashes the file
ID to know the community with the
replica placement information

– Through brokers, the placement
information is returned back

23

Design: Replica Indexing
• Finding placement information

– Upon the request for a file, the head
first checks whether the replica
holder of the file exists in local
community

– Otherwise, the head hashes the file
ID to know the community with the
replica placement information

– Through brokers, the placement
information is returned back

24

Design: Replica Indexing
• Finding placement information

– Upon the request for a file, the head
first checks whether the replica
holder of the file exists in local
community

– Otherwise, the head hashes the file
ID to know the community with the
replica placement information

– Through brokers, the placement
information is returned back

25

Design: Replica Indexing
• Finding placement information

– Upon the request for a file, the head
first checks whether the replica
holder of the file exists in local
community

– Otherwise, the head hashes the file
ID to know the community with the
replica placement information

– Through brokers, the placement
information is returned back

26

Design: Replica Indexing
• Finding placement information

– Upon the request for a file, the head
first checks whether the replica
holder of the file exists in local
community

– Otherwise, the head hashes the file
ID to know the community with the
replica placement information

– Through brokers, the placement
information is returned back

27

Design: Replica Indexing
• Locating the requested file

– From the replica placement
information, the head schedules
searches in the communities with
replicas

– The head uses DTN routing algorithm
to send the request to the target
node

– The procedures repeat until a replica
is found

28

Performance Evaluation
• Simulator

– Event driven simulator

• Node mobility traces

– Dartmouth trace (DART) [1]:

• A 119-day record for wireless devices carried by students on
Dartmouth College campus

• 22 communities, 15 nodes per community in average

• Initial period: 30 days

– DieselNet trace (DNET) [2]:

• A 20-day record for WiFi nodes attached to the buses in the
downtown area of UMass college town

• 3 communities, 12 nodes per community in average

• Initial period: 2.5 days

29
[1] T. Henderson, etc. “The changing usage of a mature campus-wide wireless network,” in Proc. of MobiCom, 2004.
[2] X. Zhang, etc. “Study of a bus-based disruption-tolerant network: mobility modeling and impact on routing,” in Proc.
of MobiCom, 2007.

Performance Evaluation (cont.)
• Experiment settings

– File properties

• Each node originally holds 100 files and has 300KB available
storage

• Each file has the same size: 1KB

• File popularity follows Zipf distribution with parameter 0.7

– Search requirements

• File requests were generated periodically

• Generation period: 1 day for DART and 4 hours for DNET

• Search rate: number of file requests generated in each period

• Expiration TTL: 4 hours in DART and 2 hours in DNET

30

Performance Evaluation (cont.)
• Data loss resistance

– Comparison methods

• Random: randomly places replica
considering popularity

• Uniform: randomly places replica
without considering popularity

– Metrics

• Data loss probability under various
percentages of concurrent failure

• Data loss probability under various
sizes of nodes in a group

31

Performance Evaluation (cont.)
• File search efficiency

– Comparison methods

• MOPS publish/subscribe system [1]

• SPOON file sharing system [2]

– Metrics

• Success rate: percentage of file requests that successfully
reach their target files within TTL

• Average delay: average time (in seconds) spent by file
requests to reach their target files

• Average search length: average number of forwarding hops
experienced by a file request

32
[1] F. Li and J. Wu, “MOPS: Providing content-based service in disruption-tolerant networks,” in Proc. of ICDCS, 2009.
[2] K. Chen, H. Shen, and H. Zhang, “Leveraging social networks for p2p content-based file sharing in mobile ad hoc
networks,” in Proc. of MASS, 2011.

Experiment with Different Search Rates (DART)

Success rate: MobileCopy>SPOON>>MOPS Ave. delay: MOPS>>SPOON>MobileCopy

Ave. search length: MOPS<MobileCopy<SPOON
33

Data Availability

34

Success rate with DART trace Success rate with DNET trace

Ave. delay with DART trace Ave. delay with DNET trace

Conclusions
• We proposed MobileCopy, it

– reduces the probability of data loss under correlated node failures

– determines replication of a file based on its popularity

– uses a DHT-based file replica indexing method for efficiently updating
and fetching replicas

• In our future work, we plan to further study how to
constrain the number of FNSs to reduce data loss.

35

Thank you!

Questions & Comments?

Li Yan, PhD Candidate

lyan@clemson.edu

Pervasive Communication Laboratory

Clemson University

36

