@ U N 1T VETRSTTTY

MobileCopy:
Resisting Correlated
Node Failures to
Enhance Data
Availability in DTNs

Authors: Li Yan, Kang Chen, Haiying
Shen and Guoxin Liu
Dept. of Electrical and Computer Engineering
Clemson University, SC, USA

1

IIIIIIIIII

Outline

Introduction

Related work
Problem depiction
Design of MobileCopy
Evaluation
Conclusion

S UNITVERSITY

Introduction

- Nodes form delay tolerant networks in distributed
Manner
— Without infrastructure for communication

+ Nodes move autonomously in the network
— Example 1: probing sensors on battlefield
— Example 2: rescue devices in disaster area
— Example 3: mobile devices held by people on campus

=)

o

2 B A\
A
W A5
S
) @]

/_.4@ \

4

@

%o

)

B

{
L

‘\‘0

%

U N I ¥ E RIS T & ¥

Introduction (cont.)

File sharing in DTN is important
Nodes need to share their captured events
Locate malicious nodes timely
Nodes need to efficiently find the interested file

Cascaded node failure in DTN is common
Failure of one node may result in overload to nearby nodes
Malicious nodes can infect nearby nodes
Power outage leads to correlated node failure

U N I ¥ E RIS T & ¥

Related Work

Increase file availability by replication [TMC'06,
MSN'13]

Create or delete file replicas to prevent data loss with
reasonable cost

Differentiate nodes by carrying ability

Popularity based methods [ICNP’11, Mobilware’09]

Determine file replicas based on access frequency of files
Consider storage and mobility of nodes

There is no work that tries to reduce data loss in
correlated node failures, which is common in
wireless networks

U N I ¥ E RIS T & ¥

Problem Depiction

Previous methods: random replication

A failure node set (FNS) is a set of nodes whose simultaneous
failures cause a file loss

The probability that a file is replicated on any FNS is uniformly
distributed

Drawback of random replication

When the number of files is large enough, the failure of any
FNS will result in the loss of some files

Distributed nature of DTNs makes file status update difficult

Invalid requests for lost files degrade the efficiency of file
sharing in DTNs

Problem Depiction

Random replication
File;:(ny,n-,Ng), File;:(ny,n5,n,), Files:(ny,ng4,nNn-),
File,:(ny,n5,Nng), Files:(n,,n3,n,), Fileg:(n,,Nn,4,Nn-),
File;:(n,,ns,Nng), Fileg:(ns,ng,Ng), Fileg:(n3,Ns,Ng),
File;y:(n53,ns5,Ng), Filey;:(ng,Ng,Ng), File;5:(N3,Ng,Ng)

Probability of data loss: 12/84=14.3%

Constrained replication
<File,,File,,Files,File,>:(n{,n,,n5),
<Files, Fileg, File,,Fileg>:(n,,ns,Ng),
<Fileg,File,q,Filey,File;,>:(n3,ng,Ng)

Probability of data loss: 3/84=3.6%

U N 1 ¥ E

R S 1 T ¥

A |[BA |15\
A || AN || oA
WV N | WVAVEN |V VAN
AL || A0\ || AL
"AA [T |[TAL
A || AL || AL
Random
"AA "B |4
A || AL || AL
AN N WAV | AVAN
A || AL || AL
WAV NIV N | WAVAN
AN || AL || LA

Constrained

U N I ¥ E RIS T & ¥

Problem Depiction

Constrained replication in DTN is non-trivial

No central server for determining candidate replica holder
combinations

Delivering replicas to determined holders takes time in DTNs
Accessing replica placement information is not easy

Jointly considering file popularity and data loss reduction to
enhance data availability is challenging

U N I ¥ E RIS T & ¥

Design: Network Model

A DTN with n nodes
N;, i=123,,n

File sharing is based on community
Nodes may have common mobility patterns
Nodes with high meeting probability form one community

Focus of MobileCopy
File replication
File replica indexing

U N I ¥ E RS 1 T ¥

Design: File Replication

Different roles in a community
Head: the node with the highest
centrality

Maintain information of the
community distribution

Conduct file replication

Maintain replica placement
information in its community O ©

Broker: the node that frequently ®
visits other communities

Transfer information between
communities

U N1V ETRSTITY

Design: File Replication

- Different roles in a community
— Head: the node with the highest
centrality

- Maintain information of the
community distribution

« Conduct file replication

» Maintain replica placement
information in its community

— Broker: the node that frequently
visits other communities

- Transfer information between
communities

U N I ¥ E RIS T & ¥

Design: File Replication

Inter-community file replication

The head keeps track of the
querying frequency of each file

The head determines which
community needs replica
dissemination

The head asks broker for each
community to disseminate files

U N I ¥ E RIS T & ¥

Design: File Replication

Inter-community file replication

The head keeps track of the
querying frequency of each file

The head determines which
community needs replica
dissemination

The head asks broker for each
community to disseminate files

U N I ¥ E RS 1 T ¥

Design: File Replication

Inter-community file replication

The head keeps track of the
querying frequency of each file

The head determines which
community needs replica
dissemination

The head asks broker for each
community to disseminate files

U N I ¥ E RS 1 T ¥

Design: File Replication

Inter-community file replication

The head keeps track of the
querying frequency of each file

The head determines which
community needs replica
dissemination

The head asks broker for each
community to disseminate files

15

U N I ¥ E RIS T & ¥

Design: File Replication

Popularity-aware replica number determination

The head determines the number of replicas (Rf) for a file (Ff)
based on its popularity (Py)

Specifically, the head determines the maximal number of
replicas allowed for a file (M). The head selects M thresholds to
evenly split popularity into M+1 ranges

The number of replicas in each range is r (r=0,1,...,M), then M
should satisfy

Zr* Ne % Sq = S
" M+1 @

Where N, is the total number of nodes in the community. s, is
the average file size in the community. g determines the
percentage of the storage for replicas. S is the size of available
storage in the community.

U N I ¥ E RIS T & ¥

Design: File Replication

Limiting replica holder combinations

For each file, we limit the number of candidate replica holders
to M+t (t is a small integer)

Specifically, the head splits N. community nodes into [Iévjt]

groups. The replica holders of each file can only be selected
from one group.

Suppose M=3, t=1, N.=12, the nodes are split as below
< N17N27N37N4||N57N67N77N8||N97N107N117N12 >

Random replication has () = 220 possible combinations. While
MobileCopy only has 3 (‘?f) = 12 possible combinations.

U N I ¥ E RIS T & ¥

Design: File Replication

Storage limitation consideration

MobileCopy lets each node report to the head when its storage
becomes full

The head excludes the nodes without available storage when
selecting holders for replicas

When the storage of all nodes in a community is full, the target
node of the new replica randomly drops some replicas

Dropping replicas randomly does not break the rule that more
popular files have more replicas

U N I ¥ E RIS T & ¥

Design: Replica Indexing

Distributing replica information

MobileCopy uses the distributed hash
table (DHT) to distribute replica
placement information

Hash(F,)=C

By hashing the file name, the head
identifies the community to report
the determined replica placement

information

The replica placement information
will be stored in multiple nodes that
often stay in the community

U N I ¥ E RS 1 T ¥

Design: Replica Indexing

Distributing replica information

MobileCopy uses the distributed hash
table (DHT) to distribute replica
placement information

Hash(F,)=C

By hashing the file name, the head
identifies the community to report
the determined replica placement

information

The replica placement information
will be stored in multiple nodes that
often stay in the community

U N I ¥ E RS 1 T ¥

Design: Replica Indexing

Distributing replica information

MobileCopy uses the distributed hash
table (DHT) to distribute replica
placement information

By hashing the file name, the head
identifies the community to report
the determined replica placement

information

The replica placement information
will be stored in multiple nodes that
often stay in the community

U N I ¥ E RS 1 T ¥

Design: Replica Indexing

Distributing replica information

MobileCopy uses the distributed hash
table (DHT) to distribute replica
placement information

By hashing the file name, the head
identifies the community to report
the determined replica placement

information

The replica placement information
will be stored in multiple nodes that
often stay in the community

U N I ¥ E RS 1 T ¥

Design: Replica Indexing

Finding placement information

Upon the request for a file, the head
first checks whether the replica
holder of the file exists in local
community

Otherwise, the head hashes the file
ID to know the community with the
replica placement information

Through brokers, the placement
information is returned back

U N I ¥ E RS 1 T ¥

Design: Replica Indexing

Finding placement information

Upon the request for a file, the head
first checks whether the replica
holder of the file exists in local
community

Otherwise, the head hashes the file
ID to know the community with the
replica placement information

Through brokers, the placement
information is returned back

U N I ¥ E RS 1 T ¥

Design: Replica Indexing

Finding placement information

Upon the request for a file, the head
first checks whether the replica
holder of the file exists in local
community

Otherwise, the head hashes the file
ID to know the community with the
replica placement information

Through brokers, the placement
information is returned back

U N I ¥ E RS 1 T ¥

Design: Replica Indexing

Finding placement information

Upon the request for a file, the head
first checks whether the replica
holder of the file exists in local
community

Otherwise, the head hashes the file
ID to know the community with the
replica placement information

Through brokers, the placement
information is returned back

U N I ¥ E RS 1 T ¥

Design: Replica Indexing

Finding placement information

Upon the request for a file, the head
first checks whether the replica
holder of the file exists in local
community

Otherwise, the head hashes the file
ID to know the community with the
replica placement information

Through brokers, the placement
information is returned back

U N I ¥ E RS 1 T ¥

Design: Replica Indexing

Locating the requested file

From the replica placement
information, the head schedules
searches in the communities with
replicas

Hash(F,)=C

The head uses DTN routing algorithm
to send the request to the target
node

The procedures repeat until a replica
is found

U N I ¥ E RIS T & ¥

Performance Evaluation

Simulator
Event driven simulator

Node mobility traces
Dartmouth trace (DART) [1]:

A 119-day record for wireless devices carried by students on
Dartmouth College campus

22 communities, 15 nodes per community in average
Initial period: 30 days

DieselNet trace (DNET) [2]:

A 20-day record for WiFi nodes attached to the buses in the
downtown area of UMass college town

3 communities, 12 nodes per community in average

Initial period: 2.5 days

[1] T. Henderson, etc. “The changing usage of a mature campus-wide wireless network,” in Proc. of MobiCom, 2004.

[2] X. Zhang, etc. “Study of a bus-based disruption-tolerant network: mobility modeling and impact on routing,” in Proc.
of MobiCom, 2007.

U N I ¥ E RIS T & ¥

Performance Evaluation (cont.)

Experiment settings
File properties
Each node originally holds 100 files and has 300KB available
storage
Each file has the same size: 1KB
File popularity follows Zipf distribution with parameter 0.7

Search requirements
File requests were generated periodically
Generation period: 1 day for DART and 4 hours for DNET
Search rate: number of file requests generated in each period
Expiration TTL: 4 hours in DART and 2 hours in DNET

U N I ¥ E RS 1 T ¥

Performance Evaluation (cont.)

Data loss resistance

Comparison methods

Random: randomly places replica
considering popularity

Uniform: randomly places replica
without considering popularity

Metrics

Data loss probability under various
percentages of concurrent failure

Data loss probability under various
sizes of nodes in a group

=] = o
» o) o) N

Probability of data loss
o
o

o o
o)) e

Probability of data loss
o
=

P
0, 8 -0-0.-¢

<
(8}
1

°-90-0
[K
! ;

:

’
Ty,

L 4

"

" !
"

-El- MobileCopy (<5)
-B- MobileCopy (<2)
A /| -©-Random (<5)
A .| -@ Random (<2)
Com | <&~ Uniform (=5)
-9-Uniform (=2)

02V 0406 08 1 12
Percentage of failure nodes

-B- MobileCopy (failProb=0.2)
-B-Random (failProb=0.2)
> Uniform (failProb=0.2)
-&-MobileCopy (failProb=0.3)
-©-Random (failProb=0.3)
<} Uniform (failProb=0.3)
-@ MobileCopy (failProb=0.4)
-@Random (failProb=0.4)
7/ Uniform (failProb=0.4)

of nodes in each group

U N I ¥ E RIS T & ¥

Performance Evaluation (cont.)

File search efficiency

Comparison methods
MOPS publish/subscribe system [1]
SPOON file sharing system [2]

Metrics
Success rate: percentage of file requests that successfully
reach their target files within TTL
Average delay: average time (in seconds) spent by file
requests to reach their target files
Average search length: average number of forwarding hops
experienced by a file request

[1] F. Li and J. Wu, “"MOPS: Providing content-based service in disruption-tolerant networks,” in Proc. of ICDCS, 2009.
[2] K. Chen, H. Shen, and H. Zhang, “Leveraging social networks for p2p content-based file sharing in mobile ad hoc
networks,” in Proc. of MASS, 2011.

U N I ¥ E RS 1 T ¥

Experiment with Different Search Rates (DART)

08 g gx 10°
@::Z::_Q ------ :@-----Zg:::::::@:::::::@
8,
208 | =
© -E- MobileCopy <7
n --MOPS ho]
@ 04 -¢- SPOON 0
3 @
@ 05
0.2 <
4
% 30 40 50 60 70 30

Success rate: MobileCopy>SPOON>>MOPS

Search rate

25

£ oY o0
o

c

ko)

5 ° a

5 Q------ [--""" T T I g------- o

(0]

o)

[} -E- MobileCopy
15

g ~-MOPS

o -¢- SPOON

>3

bo 30 40 50 60 70
Search rate

-E- MobileCopy
--MOPS
-©-SPOON

IR SOt S
R T R R

Search rate

Ave. delay: MOPS>>SPOON>MobileCopy

Ave. search length: MOPS<MobileCopy<SPOON

33

U N 1 ¥ E R S

T

Data Availability

0.8/
0.78 _.--H
DS
2076 LT
— ’g:,
P .
P 0.74- ’
[&]
g 0.72
w - &
-E- MobileCopy
0.7 —e-Uniform
06 -¢-Random
’ %5 25 35
TTL (hour)
Success rate with DART trace
4.5% 10°
4t
>
)
S35
()]
@
g 3
> .
< s)
25 @ -E- MobileCopy
- Uniform
. ‘ -©-Random ‘
%5 20 25 30 35
TTL (hour)

Ave. delay with DART trace

0.95
OO - Lhetih 9
0.9 B
2 %
S o085
w
w
a .
8 08
>
@ B
075 -E-MobileCopy
—o—Uniform
-&-Random

3 4 6
TTL (hour)
Success rate with DNET trace

5000

Average delay
w B
o o
o o
(=] o

N
(=]
o
o

-E-MobileCopy
-o-Uniform
-©-Random

‘ ;":,’,,:,
1000? 2

3 4
TTL (hour)

Ave. delay with DNET trace

34

U N I ¥ E RIS T & ¥

Conclusions
We proposed MobileCopy, it

reduces the probability of data loss under correlated node failures
determines replication of a file based on its popularity

uses a DHT-based file replica indexing method for efficiently updating
and fetching replicas

In our future work, we plan to further study how to
constrain the number of FNSs to reduce data loss.

)

N

Thank you!

Questions &, Comments?

Li Yan, PhD Candidate
lyan@clemson.edu
Pervasive Communication Laboratory

Clemson University

