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I. INTRODUCTION

With ever increasing concerns on environmental issues
caused by gasoline fuel based vehicles, electric vehicles (EVs)
have attracted more and more attention from governments,
industries, and customers [1]. The recent advancements in EVs
have great potential to create a more environmentally friendly
smart city. However, due to limited battery capacity, most
current mainstream EVs still have quite limited driving range
(e.g., 100 miles) [2]. How to ensure the continuous running
of EVs on a large-scale road network (e.g., metropolitan city,
interstate) becomes a major concern.

To solve the concern, we present MobiCharger: a Mobile
wireless Charger guidance system that determines the number
of serving MEDs, and the optimal routes of the MEDs peri-
odically (e.g., every 30 minutes). We studied a metropolitan-
scale vehicle mobility dataset, and found: most vehicles have
routines, and the temporal change of the number of driving
vehicles changes during different time slots, which means the
number of MEDs should adaptively change as well. Then, we
develop an online method that utilizes Reinforcement Learning
to determine the number and the driving route of serving
MEDs. Our trace-driven experiments show that compared with
previous methods, MobiCharger increases the medium State-
of-Charge of all EVs by 50% during all time slots, and the
number of charges of EVs by almost 100%.

II. METROPOLITAN-SCALE DATASET MEASUREMENT

A. Dataset Description and Definitions

In this analysis, we use the data recorded from Jan 1, 2015
to Dec 31, 2015 for measurement, which include:
(1) Taxicab Dataset. This dataset records the status (e.g.,
timestamp, GPS position, velocity, occupancy) of 15,610 taxi-
cabs. 6,510 of them are electric taxicabs.
(2) Dada Car Dataset. This dataset is provided by the Dada
Car corporation (a customized transit service similar to Uber-
Pool), which records the status (e.g., timestamp, position,
velocity) of 12,386 electric customized transit service vehicles.
(3) Charging Station Dataset. This dataset records the GPS
position and number of chargers of 81 existing plug-in charg-
ing stations in Shenzhen.
(4) Road Map. The road map of Shenzhen is obtained from
OpenStreetMap [3]. According to the municipal information
of Shenzhen [4], we use a bounding box with coordinate
(lat = 22.4450, lon = 113.7130) as the south-west corner,
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Fig. 1. Distribution of the ratios of
frequently driven trajectories.
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Fig. 2. Distribution of the start times
of three vehicle trajectories.

and coordinate (lat = 22.8844, lon = 114.5270) as the north-
east corner, which covers an area of around 2,926km2, to crop
the road map data.

Definition 1: Vehicle Trajectory. A vehicle’s trajectory is a
sequence of Ne time-ordered landmarks, where each landmark
is represented by a latitude and a longitude.

Definition 2: Vehicle Routine. A vehicle’s trajectory is a
routine if the vehicle’s probability of driving the trajectory
at around a specific time (the standard deviation of the start
times is no higher than the threshold (i.e., 35 minutes in our
analysis)) during a time period (i.e., 365 days in our analysis)
is higher than a threshold (i.e., 20% in our analysis).

B. Dataset Analysis

1) Observation 1: Existence of Vehicle Driving Routines:
The Cumulative Density Function (CDF) of the calculated
ratios of of all the vehicles is illustrated in Figure 1. We can
see that for about 80% of the vehicles, more than 55% and
maximally about 77% of their trajectories are their frequently
driven trajectories. This result implies that most vehicles
do frequently drive several similar trajectories in different
days. Besides, we are also interested in the start time of the
frequently driven trajectories because knowing the trajectories
and their start time can exactly tell us where and when the
vehicles are likely to appear. Driven by this motivation, we
collected the distribution of the start times of each frequently
driven trajectory, and randomly selected the results of three
trajectories for illustration. Figure 2 shows the histogram of
the start times of each selected trajectory. The first trajectory
(Trajectory 1) is generally driven at around 19:00 every day,
the second trajectory (Trajectory 2) is generally driven at
around 09:30 every day, and the third trajectory (Trajectory 3)
is generally driven at around 14:30 every day. We can see that



00:00 05:00 10:00 15:00 20:00

Hour of day

0.5

1

1.5

2
N

u
m

b
e

r 
o

f 
d

ri
v
in

g
 E

V
s

10
4

Fig. 3. Number of driving EVs over
time.
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Fig. 4. Number of road segments that
have driving EVs over time.

most start times of Trajectory 1 vary within 20 minutes around
19:00 and most start times of Trajectory 3 vary within 30
minutes around 14:30. In contrast, the start times of Trajectory
2 vary over a wider range (as long as 1 hour) around 09:30.
This means that the start times of Trajectory 1 and Trajectory
3 vary less than those of Trajectory 2.

2) Observation 2: Temporal Change of the Number of
Driving EVs: Figure 3 shows the calculated average number
of driving EVs in each hour of a day. We can see that during
the time slots between around 02:00 and 05:00, the number
of driving EVs significantly dropped to less than 8,000. This
is primarily because that during these time slots, the human
transit demand for taxicabs and Dada cars greatly decreased.
Some taxicabs and Dada cars chose to stop running during
these time slots to save cost. Then the number of driving EVs
quickly increased to around 18,000 at around 09:30, which
corresponds to the “rush hour” in the morning of a day. At
around 12:00, there is a slight drop-down on the number of
driving EVs due to reduced human transit demand at noon.
Then the number of driving EVs increased to another peak
at around 19:30, which corresponds to the “rush hour” in the
evening of a day. These results demonstrate that the number
of EVs that the MEDs need to support to keep running on the
road network varies during different time slots.

We measured the number of road segments that have driving
EVs during each time slot in each day throughout the 365 days.
Figure 4 shows the average number of road segments versus
hour of day. We can see that the change of the number of
road segments that have driving EVs is generally similar as the
change of the number of driving EVs in Figure 3. However,
there are several conspicuous drops of the number of road
segments that have driving EVs at around 10:00, 13:00 and
17:00. This may be because that there are not many passengers
requesting transit during these time slots, so some taxicabs and
Dada cars chose to wait at some places with high likelihood
of passenger appearance to save driving cost [1]. From these
results, we can conclude that in addition to adjusting the
number of the serving MEDs, we should also optimize the
driving route of the MEDs.

III. SYSTEM DESIGN

A. Framework of MobiCharger

1. Vehicle mobility information derivation. First, we apply
the Data Cleaning (e.g., filtering out positions out of the

actual range of Shenzhen, redundant positions). Then, based
on the cleaned data, we derive the Trajectories in Landmarks
of EVs on the Roadmap with Landmarks and Road Segments
as explained in Section II-A.
2. EV Traffic Density Estimation. Based on the output Tra-
jectories in Landmarks from the first stage, we combine the
EVs’ current trajectories and routines to complete EV Traffic
Density Estimation for each road segment of the road network.
3. Reinforcement Learning based MED Routing. Based on
the real-time status of EVs, we apply the EV Traffic Density
Estimation to determine the road segments with new changes
of EV traffic. Then we train and utilize the Reinforcement
Learning based MED Routing to decide the place each MED
should drive to as a response to the traffic change, and the
place can be the originally planned road segment, a new road
segment or an MED’s nearest parking lot.

IV. CONCLUSION

Dynamic wireless charging for EVs enables an MED to
charge an EV in motion. The deployment of MEDs adaptive
to the change of the number of driving EVs is essential for
maintaining the SoC of EVs. Our proposed MobiCharger is
the first to optimize the driving paths of MEDs to minimize the
total number of MEDs, maximize the number of encountering
EVs of all the MEDs, and meanwhile ensure that each EV
has sufficient SoC all the time. Our analytical results on a
metropolitan-scale vehicle mobility dataset provide foundation
for the design of MobiCharger. We utilize the combination of
EVs’ current trajectories and the EVs’ routines to estimate the
density of EVs and the cruising graph that the MEDs should
cover. Then, we develop an online method that utilizes RL to
adjust the driving route of MEDs when the real-time vehicle
traffic changes. We conducted trace-driven experiments on
SUMO to verify the performance of MobiCharger. Compared
with previous methods, MobiCharger increases the medium
State-of-Charge of all EVs by 50% during all time slots, and
the number of charges of EVs by almost 100%.
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