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Abstract—With recent experience in multiple large-scale dis-
asters, it has been widely confirmed that the severity of a
disaster is greatly dependent on the effectiveness of ambulance
dispatching during disaster phase. However, previous base station
(i.e., temporary or permanent hospital) based ambulance rede-
ployment methods and dynamic ambulance scheduling methods
cannot handle the ambulance dispatching problem in catas-
trophic situations. In this paper, we present MobiAmbulance:
a human Mobility based Ambulance dispatching system that
aims to maximize the total number of fulfilled patient pick-
up requests, and minimize the driving delay of the fulfilled
requests. We studied a state-scale human mobility dataset and
found that the change of vehicle flow rate can be utilized to
determine the connection status between road segments, and the
distribution of people in catastrophic situations is drastically
different from that in normal situations. Then, we develop a
method to determine the road network connection status and
the set of road segments that can still be driven through by
ambulances after disaster. Based on the updated road network
graph, we develop an ambulance dispatching method based on
weighted driving route to maximize the total number of fulfilled
patient pick-up requests, and minimize the driving delays of the
fulfilled requests. Our trace-driven experiments demonstrate the
superior performance of MobiAmbulance over other comparison
methods.

I. INTRODUCTION

Emergency Medical Services (EMS) that rely on the dis-
patching of emergency vehicles to pick up patients and trans-
port them to hospitals are of pivotal importance, especially
during and after disasters. In this paper, we simply use ambu-
lances to represent emergency vehicles used for transporting
patients to hospitals [1] With experience in disasters such as
Hurricane Florence (September 12-15, 2018) and Hurricane
Michael (October 7-16, 2018), it has been widely recognized
that the severity of a disaster is greatly dependent on the
effectiveness of EMS during disaster phase. Although a lot
of casualties are caused by the disaster itself, many casualties
are due to lack of timely medical aid during the “golden rescue
hour” after the disaster [1], [2]. Therefore, the timely and
effective scheduling method of ambulances under catastrophic

situations is necessary. Catastrophic situations and disasters
are interchangeable terms in this paper.

Many methods that determine the deployment locations of
ambulance base stations and optimize the stand-by base station
for each ambulance at different times have been proposed [3]–
[10]. A base station here means a temporary location where
ambulances can stand by, and it is usually a temporary or
permanent hospital. Generally, the works focus on utilizing
various models that consider multiple factors (e.g., traffic,
ambulance availability, patient appearance) to determine the
deployment locations of base stations or the base station an
ambulance should stand by at a specific time. However, these
methods are not applicable for catastrophic situations, in which
the factors exhibit different phenomenon. For example, during
a disaster, there may be a large number of patient pick-up
requests over a short period of time and in more condensed
areas than in normal situations, and the original deployment
of base stations may not be suitable for standing by anymore.

In the meantime, several dynamic ambulance scheduling
methods also have been proposed [11]–[13]. These methods
pre-schedule the driving route of each ambulance at the start
of a day based on historical appearance of patient pick-up re-
quests. However, large-scale disaster usually cause some road
segments in the road network to be broken (i.e., inaccessible
or congested). These methods cannot update the driving route
of the ambulance according to the real-time road network
connection status and the changed distribution of patient pick-
up requests after disaster. Therefore, it is a challenge to obtain
the real-time road network connection status and distribution
of patient pick-up requests after a disaster, and optimize the
driving route of an ambulance to pick up an patient to be the
one that has the minimum driving delay based on the obtained
information.

To handle the challenge, we propose MobiAmbulance, a
human Mobility based Ambulance dispatching system that
aims to maximize the total number of fulfilled patient pick-
up requests, and minimize the driving delay of the ful-
filled requests. During catastrophic situations, real-time road
connection status may not be updated fast enough due to



interrupted traffic measurement. Human GPS positions can
help predict potential ambulance requests and estimate the
road network connection status. First, we analyzed a human
mobility dataset that records the movements of most of the
people in Charlotte, North Carolina before, during, and after
the Hurricane Florence (September 12-15, 2018). We have the
following observations from our dataset analysis:
(1) We found that the effect caused by the disaster can be

described by the change of the road segment’s vehicle
flow rate (i.e., average number of passing vehicles per unit
time). Thus, we can utilize the change of vehicle flow rate
to determine the connection status of road segments and
obtain the set of road segments that can still be driven
through by a vehicle. The road connection status will
serve as the foundation of the ambulance dispatching.

(2) We also found that the disaster greatly affected the
mobility of people. In addition to doing routing that
considers the road network connection status, the ambu-
lance dispatching method must also adapt to the changed
distribution of people.

The observations serve as the foundation for the design of
MobiAmbulance. Accordingly, we first develop a method to
determine the road network connection status and the set of
road segments that can still be driven through by vehicles after
disaster (called updated road network graph) by comparing the
vehicle flow rates of the road segments before and after diaster.
Then, based on the updated road network graph, we develop
an ambulance dispatching method based on weighted driving
routes to guide the ambulances. The ambulance dispatching
method determines the driving route for each ambulance
to maximize the ambulances’ weighting function, which is
defined in a way that increases the number of potential patient
pick-up requests that all ambulances can possibly fulfill, and
reduces the total driving delay that the ambulances need to
drive to their newly assigned road segments. In summary, our
contributions include:

1. Our analysis on a state-scale human mobility dataset con-
firms the effect of disaster on vehicle flow rate and human
movement, and aids in the design of MobiAmbulance.

2. We propose MobiAmbulance, a human Mobility based
Ambulance dispatching system that aims to maximize
the total number of fulfilled patient pick-up requests, and
minimize the driving delay of the fulfilled requests.

3. We have conducted extensive trace-driven experiments to
show the effectiveness of MobiAmbulance in terms of the
number of fulfilled patient pick-up requests per unit time,
and driving delay of fulfilling the requests.

To our knowledge, this paper is the first work for ambu-
lance dispatching under dynamic catastrophic situations. The
remainder of the paper is organized as follows. Section II
presents literature review. Section III presents our dataset
analysis results. Section IV presents the detailed design of
MobiAmbulance. Section V presents performance evaluations.
Section VII concludes the paper with remarks on future work.

II. RELATED WORK

Base station based ambulance redeployment. Many methods
[3]–[10] that determine base stations for ambulances based on
the dynamic change of patient pick-up requests have been pro-
posed. Yue et al. [3] proposed considering the allocation and
dynamic redeployment of ambulances by using simulation-
based approach to find the ambulance deployment strategy that
has the minimum driving delay. Schmid et al. [4] formulated
a mixed integer programming model to maximize the total
patient pick-up request coverage of ambulance deployment and
also minimize the ambulances’ driving delays. Saisubramanian
et al. [5] generated an ambulance deployment strategy that
minimizes the ambulances’ driving delay with a bounded risk
(i.e., percentage of incidents that can have driving delays
higher than the objective) using a linear optimization model.
Gendreau et al. [6] proposed the dynamic double standard
model (DDSM) that solves the ambulance redeployment prob-
lem based on the objective of the double standard model
(DSM). Degel et al. [7] developed a multi-period model for
EMS location and relocation planning at a tactical level in
which the temporal and spatial variations in demand and
driving delays are captured. Van et al. [8] proposed an integer
programming based ambulance deployment model that focuses
on minimizing the average driving delay of the ambulances
to the patients’ pick-up request locations. Snyder et al. [9]
proposed several reliability models to find the optimal location
of ambulance base stations so as to minimize regular driving
cost of the ambulances when some of the base stations do not
have available ambulances. Daskin et al. [10] formulated the
maximum expected covering location model (MEXCLM) and
a heuristic solution to maximally cover the potential patient
pick-up requests with the minimum driving delays. However,
these methods are not applicable for catastrophic situations,
in which the factors may be relatively more abnormal and the
original deployment of base stations may not be suitable for
standing by.

Dynamic scheduling of ambulances. Many methods [11]–
[13] that focus on scheduling the real-time cruising route of
ambulances to further reduce the ambulances’ driving delay
to the target patients’ pick-up positions have been proposed.
Schmid et al. [11] proposed a stochastic dynamic model that
combines dynamic ambulance relocation from an ambulance’s
real-time position and updated driving route to minimize the
ambulance’s driving delay. Maxwell et al. [12] proposed an ap-
proximate dynamic programming (ADP) model that schedules
the driving routes of idle ambulances such that the real-time
coverage of potential patient pick-up requests is maximized.
Jagtenberg et al. [13] developed a heuristic algorithm for
real-time ambulance redeployment based on MEXCLP. The
dispatching policy for idle ambulances is based on maximizing
the marginal expected coverage of the potential patient pick-
up requests. However, these methods cannot update the driving
route of the ambulance according to the real-time road network
connection status and the changed distribution of patient pick-
up requests after disaster.
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III. METROPOLITAN-SCALE DATASET MEASUREMENT

A. Dataset Description and Definitions

Our datasets, provided by X-Mode [14], record the human
mobility of people in Charlotte city of North Carolina State 15
days prior and after the Hurricane Florence (from September
1 to September 24, 2018).

The datasets include:
• GPS Data. GPS data is collected from individual’s cell

phone’s GPS sensor at some irregular time interval (from
0.5 hours to 2 hours). The data contains time-stamp,
latitude, longitude, altitude, and speed of each user during
the sampling period from September 1 to September 24,
2018. The associated time stamp and unique id of each
individual allows us to track each user anonymously.
The location data covers all over the Charlotte city. The
data was captured from September 1 to September 24
encompassing the development of the hurricane Florence
(September 1 to 11), landfall-when the center of the eye
of hurricane reaches land (September 14) and weakening
(September 16 to 19) of the hurricane Florence.

• Road map data. The road network map of Charlotte
city is obtained from OpenStreetMap [15]. We have used
a bounding box with coordinate (lat = 35.6022, lon =
−79.0735) as south-west corner, and coordinate (lat =
36.0070, lon = −78.2592) as north-east corner. We have
used the data from National Weather Service to crop the
affected area.

For data management, we utilized a 34TB Hadoop Dis-
tributed File System (HDFS) [16] on a cluster consisting of
10 nodes, each of which is equipped with 16 cores and 64
GB RAM. For data processing, we used Apache Spark [17],
which is a fast in-memory cluster computing system running
on Hadoop. We explore spatio-temporal correlation and di-
vergence between the mobility (in terms of trips) obtained
by cellphones. Such correlation and divergence serve as the
empirical guidelines for our later inference.

We represent the road network of Charlotte city with a
directed graph G = (E, V ), in which vertices V represent
landmarks (i.e., intersections or turning points), and edges E
represent road segments [18]–[21]. Based on the road network,
we introduce the following definition:

Definition 1. Human Trajectory. A human’s trajectory is a
sequence of Ne time-ordered landmarks, where each landmark
is represented by a latitude and a longitude.

Definition 2. Vehicle Flow Rate. Vehicle flow rate of a road
segment is defined as the average number of vehicles driving
through the road segment per unit time [18].

B. Dataset Analysis

1) Observation 1: Vehicle Flow Rate Before and After
Disaster: Generally, the incidents caused by a disaster (e.g.,
wreckage, flooding, traffic accidents) will severely change
the traffic status of many road segments. To ensure the
service efficiency of ambulances under catastrophic situations,
the ambulance dispatching system must reliably offer the
driving route that let the ambulances drive through to their
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Fig. 1: Vehicle flow rate of a road segment before and after disaster.
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Fig. 2: Distribution of people in a CBD area before and after disaster.

target patient pick-up locations without confronting obstacles.
Vehicle flow rate, which measures the number of vehicles
passing through a road segment per unit time, is a direct
metric showing whether the road segment is still suitable
for an ambulance to drive through after disaster breakout.
To illustrate the the road segment connection status and the
vehicle flow rate of the road segment, we measured the vehicle
flow rate of a flooded road segment per hour on August 25,
2018 (i.e., before disaster) and September 20, 2018 (i.e., after
disaster).

Figure 1 shows the measured results. We can see that the
gap between the vehicle flow rates of this road segment before
and after the disaster can be as high as 1,500 (at 00:00) and as
low as 200 (at 08:00). The result shows that the effect caused
by the flooding can be described with the change of the road
segment’s vehicle flow rate. Thus, we can utilize the change
of vehicle flow rate to determine the connection status of road
segments and obtain the set of road segments that can still
be driven through by an ambulance. In Section IV-B, we will
elaborate the details of our method on estimating the road
network connection status.

2) Observation 2: Distribution of People Before and After
Disaster: Due to the effect of disaster, the distribution of
people may also significantly change, which invalidate the
ambulance dispatching methods that are designed for normal
situations. We consider that a person has visited an area if
his/her location stays in the area for more than 5 minutes. To
confirm this conjecture, we measured the numbers of people
visits to Charlotte’s Central Business District (CBD) in the
7 days of a week before the disaster (August 19–August 25)
and in the 7 days of a week after the disaster (September
18–September 24), respectively .
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The results are illustrated in Figure 2. The numbers of
people visits during the days before the impact of disaster
are much higher than those during the days after the impact
of disaster. The gap in the numbers of people visits between
“Before disaster” and “After disaster” can be as high as 5,000.
This shows that the disaster also greatly affected the mobility
of people. In addition to do routing considering the road
network connection status, the ambulance dispatching method
must also adapt to the changed distribution of people. In
Section IV-C, we will elaborate the details of our ambulance
dispatching method based on weighted driving route. Based
on these observations, we will find a solution in Section IV
for the following problem.

Problem statement: Given a road network G affected by
a diaster, and human mobility data, how to determine the
road network connection status after disaster, and utilize the
obtained road network connection status to dispatch the ambu-
lances to maximize the total number of fulfilled patient pick-
up requests, and minimize the driving delay of the fulfilled
requests?

We assume that the capacity of an ambulance is c, which
can be set by the ambulance dispatching center according to
actual equipment details (e.g., c =1, 5, etc.). There will be
multiple rounds of dispatches within 24 hours per ambulance.
Once the patients are transported to a certain hospital, it will
be dispatched to serve the next patient pick-up request.

IV. SYSTEM DESIGN DETAILS

A. Framework of MobiAmbulance

MobiAmbulance consists of the following stages:
1.Human mobility information derivation (Section III-A).

First, we apply the Data Cleaning (e.g., filtering out posi-
tions out of the actual range of our interested city, redundant
positions). Then, based on the cleaned data, we derive the
Trajectories in Landmarks of humans on the Roadmap with
Landmarks and Road Segments.

2.Road network connection status estimation (Sec-
tion IV-B). Based on the output Trajectories in Landmarks
from the first stage, we estimate the Road Network Connec-
tion Status to obtain the set of available road segments that
the ambulances can still drive through after disaster.

3.Ambulance Dispatching based on Weighted Driving
Route (Section IV-C). Based on the obtained set of available
road segments, we utilize the Ambulance Dispatching based
on Weighted Driving Route to decide the road segment each
ambulance should drive to maximize the total number of
potential patient pick-up requests that can be served by the
ambulances, and minimize the ambulances’ driving delay in
fulfilling these requests.

B. Road Network Connection Status Estimation

After disaster, the road network is usually broken by certain
issues such as flooding, wreckage, etc. Therefore, it is chal-
lenging to know the real-time road network connection status
that the ambulances can drive through. This section presents
our road network connection status estimation method that

resolves the problem: how to obtain the real-time road network
connection status after disaster? In the following sections,
we first specify how MobiAmbulance determines the real-
time road network connection status (Section IV-B1). Second,
we will specify how MobiAmbulance determines the set of
the remaining road segments that the ambulances can drive
through (called updated road network graph) to fulfill patients’
pick-up requests (Section IV-B2).

1) Determining The Real-time Road Network Connection
Status: Recall that the conclusion from Observation 1 (Sec-
tion III-B1) indicates that the road segments with significant
change of vehicle flow rate. Note that according to Definition
2, vehicle flow rate of a road segment is defined as the average
number of vehicles driving through the road segment per unit
time. After disaster, the vehicle flow rate may significantly
decrease due to broken road segment, traffic jam, etc. Through
comparing the vehicle flow rate of a certain road segment
before and after the disaster, we can generally determine
whether an ambulance can drive through the road segment.
If we do this comparison for each road segment of the
road network, we can determine the real-time road network
connection status. Specifically, we define the measurement
period of the vehicle flow rate of a road segment as the time
interval of measuring the number of vehicles that pass through
the road segment. Recall that we partition a day into several
time slots. We let a measurement period equal to a time slot
without losing generality.

After every measurement period (e.g., 15 minutes), we
obtain the vehicle flow rate of each road segment (called
the current vehicle flow rate) and compare the result with
the vehicle flow rate during the same measurement period
in the most recent day without disaster (called the normal
vehicle flow rate). Due to various factors (e.g., flooding, debris,
traffic jam), the vehicle flow rate of some road segments will
greatly decrease. If the current vehicle flow rate is much
lower than the normal vehicle flow rate and the difference
is larger than a threshold, it means that the traffic of this road
segment is significantly affected and becomes not suitable for
an ambulance to drive through. The comparison method can
be represented as:

∆f = fn − fc < γ, (1)

where fn represents the normal vehicle flow rate, fc represents
the current vehicle flow rate, ∆f is the measured difference
between fn and fc, and γ is the vehicle flow rate threshold
to determine if the vehicle flow rate change is large. The
value setting of γ controls the tolerance degree of the vehicle
flow rate change. If the value of γ is relatively higher, the
comparison can tolerate a certain vehicle flow rate increase and
there will be more route options, but the obtained suitable road
segments may result in longer driving delay for the ambulances
to drive through, and vice versa. Thus, the value of γ should be
set according to ambulances’ requirements on driving delay.

2) Determining the Updated Road Network Graph: The
broken connections between road segments in a disaster need
to be removed from the original road network graph to create
the updated road network graph. By applying the comparison
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Algorithm 1: Determining the updated road network
graph.

Input : obtained set of road segments G̃
Output: updated road network graph G′

1 utilize the beginning of a randomly selected road
segment ei ∈ G̃ as start position;

2 initialize the minimum driving delay tmin = Inf;
3 initialize the Euler path with the minimum driving delay
rmin = None;

4 while ej ∈ G̃ has not been selected as start position do
5 utilize the beginning of ej as start position;
6 apply the LKH algorithm on G̃ to obtain an Euler

path rj ;
7 calculate the driving delay of rj : tj ;
8 if tj < tmin then
9 assign tj to tmin;

10 assign rj to rmin;

11 return the set of road segments covered by rmin as G′

Equation (1) on each road segment, we can obtain the set of
all the road segments that the ambulances can drive through.
Since the obtained set of road segments only covers partial
road network, so we denote it as G̃ = (Ẽ, Ṽ ), where Ẽ and
Ṽ represent the partial road segments and partial landmarks
included in G̃, respectively. However, these road segments
may not be connected to each other due to certain broken
road segments between them. To connect these road segments,
we need to add back several road segments that may have
been judged as “broken” by Equation (1). The additional road
segments must be the ones that result in the shortest driving
delay for ambulances. Therefore, in this section, we explain
how MobiAmbulance finds the updated road network graph
that covers all the road segments in G̃ and a driving path that
passes through all the road segments in G̃ only once and has
the minimum total driving delay for ambulances.

Specifically, to find the updated road network graph that
covers all the road segments in G̃ and a driving path that
passes through all the road segments in G̃ only once so there
is always a path given a source-destination pair, we actually
need to find an Euler path [22] through G̃, which covers all
the road segments of G̃ but only once for each segment, by
applying the LKH (Lin-Kernighan heuristic) algorithm [22].
There may be multiple Euler paths that fulfill this requirement,
and we need to select the one that results in the shortest driving
delay. Starting from the beginning of a randomly selected road
segment in G̃, we utilize the LKH algorithm to obtain the
shortest Euler path that covers G̃. We repeat this procedure
until all the road segments of G̃ have been selected as the
beginning road segment once. Finally, we extract the Euler
path that results in the shortest total driving delay based on
the road segments’ current traffic as the updated road network
graph.

The whole process can be summarized by Algorithm 1. At

Line 1, the algorithm initializes the start position to obtain
the initial Euler path. From Line 1 to Line 3, we initialize the
start position of the initial temporary Euler path, the minimum
driving delay over all the attempted Euler paths tmin, and the
corresponding Euler path rmin. From Line 4 to Line 10, we
iterate all the road segments included in G̃ as the start position
to generate a temporary Euler path, compare the Euler path’s
driving delay tj with the recorded minimum driving delay tmin,
and update the Euler path with the minimum driving delay
rmin.

C. Ambulance Dispatching based on Weighted Driving Route

From Observation 2 (Section III-B2), we know that the
distribution of people has significant change before and after
disaster, and then we can infer that the distribution of patient
pick-up requests may have significant change before and after
disaster correspondingly. The previous ambulance dispatch-
ing methods handling the normal situations [11]–[13] cannot
ensure that the patients’ pick-up requests can be fulfilled in
time under catastrophic situations. Thus, to solve the problem,
we need a method to dispatch the ambulances to pick up
the patients with the minimum driving delay and meanwhile
maximize the number of picked up patients in a global manner
according to the appearance of pick-up requests.

Therefore, we propose an ambulance dispatching system
that determines the action of each ambulance based on the
estimated weights of candidate driving routes. The action of
an ambulance will be driving to which road segment to serve
patients’ pick-up requests. The patients’ pick-up requests are
reported to the ambulance dispatching center for the global
routing of the ambulances. The guidance process of the model
is that given a current road network connection status and
distribution of patients’ pick-up requests, it outputs an action
for each ambulance. The actions of all the ambulances enable
them to drive the shortest route with the minimum driving
delay and fulfill the maximum number of potential patient
pick-up requests.

We define the weight caused by all the ambulances driving
through a route as the weighted sum of the total number
of potential patient pick-up requests that the ambulances can
serve, and the sum of the ambulances’ driving delay to serve
the requests. We define the driving delay of an ambulance
as the ambulance’s traveling time from its current position
to the end of its destination road segment determined by
the ambulance dispatching system. The ambulance dispatching
system updates the driving route for each of the ambulances
to fulfill the patients’ pick-up request with the shortest overall
driving delay periodically (e.g., every 15 minutes). The guided
ambulances will serve the pick-up requests appearing on the
road segments in their driving routes. In the following, we
introduce the details of the ambulances’ action, the number of
encountering patient pick-up requests and weighting function
of driving route for the ambulance dispatching system.

1) Ambulances’ Action: The action output by the ambu-
lance dispatching system provides a driving decision for each
ambulance. Specifically, the kth ambulance’s driving decision
(denoted by xk) means the destination road segment and it
can be any road segment in the road network (ej ∈ E). If
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xk = ej ∈ E, we use an existing shortest distance routing
method (e.g., Dijkstra algorithm [18]) to determine the kth

ambulance’s driving route from its current position to the end
of its destination road segment ej . Thus, the action can be
represented as:

a = (xk | ∀ mk ∈ A), (2)

where a represents the action, which includes the driving
decision of all the ambulances xk represents the driving
decision of the kth ambulance, and mk represents the kth

ambulance.
2) Number of Encountering Patient Pick-up Requests:

Since the ambulance dispatching system needs to determine
which road segment each ambulance needs to drive to in order
to maximize the total number of fulfilled patients’ pick-up
requests of all the ambulances, we consider the estimated num-
ber of potential patients that each ambulance may encounter
on route if it is chosen to drive to the end of each road segment
in the road network. We take the kth ambulance (denoted
by mk) as an example. For each road segment in the road
network (ej ∈ E), we use the Dijkstra algorithm [18] to find
the shortest distance trajectory from the ambulance’s current
position (denoted by pk) to the end of road segment ej . The
trajectory consists of a sequence of road segments from pk
to the end of ej , and is denoted as Φkj = {pk, . . . , ej}. By
this way, we calculate the number of potential patient pick-up
requests in each vehicle’s trajectory.

Specifically, based on the traffic of the road segments in
the trajectory, we deduce the general arrival timestamp ti
to each of the road segments ei in the trajectory. That is,
the ambulance’s driving delay to pick up the patients on
ei is ti. Suppose the number of potential patient pick-up
requests appearing on ei is nei . Finally, we use the sum of
the number of potential patient pick-up requests of all the road
segmentsNk =

∑
ei∈Φkj

nei as the kth ambulance’s estimated
number of potential patient pick-up requests if it drives to
ej . Thus, when dispatching the ambulances, we consider each
ambulance’s estimated numbers of potential patient pick-up
requests on the ambulance’s trajectory to each road segment.
It can be represented as follows:

s = (Nk | ∀ mk ∈ A) (3)

where s represents the number of encountering patient pick-up
requests of all the ambulances. Nk = {

∑
ei∈Φkj

nei |ej ∈ E}
is the estimated potential number of patient pick-up requests
that the kth ambulance can encounter if it drives to ej .
ej ∈ E represents a candidate road segment belonging to
the total set of road segments E in the road network. mk

represents the kth ambulance. A represents the set of all the
ambulances. When determining the driving route, we need to
avoid duplicate coverage of patient pick-up requests on the
same road segment. By duplicate, we mean that if the total
capacity of dispatched ambulances can already cover all the
requests on a certain road segment, there is no need to further
dispatch more ambulances to cover the road segment. This is
because that driving duplicate road segments will waste the
ambulances’ ability in serving requests.

For example, suppose an ambulance with a capacity of
c = 5 has been dispatched to drive the route e1(1 requests)→
e2(2 requests) → e3(1 requests). Since c = 5 > 4, all the 4
requests on e1, e2 and e3 can be covered by the ambulance.
Therefore, the other ambulances should not drive through these
road segments again. Therefore, when determining the driving
route of an ambulance, we exclude the road segments whose
patient pick-up requests have already been covered by the
capacity of dispatched ambulances and let the ambulance only
drive the road segments whose requests have not been fully
covered.

3) Weighting Function: Since we expect the patient pick-
up requests can be fulfilled by the ambulances’ service as
early as possible, the ambulances’ driving delay should be
minimized. Therefore, the main goal of the ambulance dis-
patching system is to find the driving routes of the ambulances
to maximize the total number of potential patient pick-up
requests that can be served by the ambulances, and meanwhile
minimize the sum of all the ambulances’ driving delays. The
weighting function resulted by the xk of all the ambulances is
defined as the weighted sum of the total number of potential
patient pick-up requests that the ambulances can serve, and
the sum of the ambulances’ driving delays, which can be
formulated as:

r(st, at) = αNq − βT d (4)

where st is the number of encountering patient pick-up re-
quests of all the ambulances at current time t, at is the driving
actions of all the ambulances at current time, Nq and T d are
the two metrics affecting the weighting function. Nq denotes
the total number of patient pick-up requests metric contributed
by all the ambulances. The more requests all the ambulances
will encounter on route, the higher weight the ambulances
will contribute. T d denotes the driving delay metric of the
ambulances. The shorter driving delay all the ambulances will
have, the higher weight the ambulances will contribute. α and
β are constants that control the respective influence of the
metrics and can be adjusted manually. Below, we explain how
we calculate Nq and T d.

The total number of fulfilled patient pick-up requests
metric is the total number of patient pick-up requests that
all the ambulances will encounter by driving to different
destination road segments. When making the driving decision
for each ambulance, as aforementioned, we need to avoid
duplicate coverage of patient pick-up requests on the same
road segment. This is because that driving duplicate road
segments will waste the ambulances’ ability in serving patient
pick-up requests. Therefore, we need to globally count the total
number of fulfilled patient pick-up requests contributed by all
the ambulances. Specifically, suppose E′ =

⋂
mk∈AΦkj is the

intersection set of the road segments that all the ambulances
can cover by making their respective driving decisions. We
calculate the sum of the numbers of patient pick-up requests
of all the road segments in E′ as the total number of fulfilled
patient pick-up requests metric. This metric is calculated as:

Nq =
∑
ei∈E′

nei , (5)
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where E′ is determined by the driving decision of each
ambulance (xk), which is from the action at, ei is an element
road segment covered in E′, and

∑
ej∈E′ nej , which is from

Section IV-C2, is the estimated potential number of fulfilled
patient pick-up requests of the ambulances that are chosen to
drive to ej . The more potential patient pick-up requests the
ambulances will encounter, the higher weight the ambulances
will contribute.

The ambulance driving delay metric is the sum of all
the ambulances’ driving delays T d =

∑
mk∈A t

d
k, where tdk is

the driving delay of the kth ambulance. Specifically, the kth

ambulance’s driving delay to ej if it is chosen to drive to the
end of the road segment ej (xk = ej ∈ E), is calculated by
tkj =

∑
ei∈Φkj

lei
vi

, where lei is the length of ei, and vi is the
speed limit of ei under current catastrophic condition.

Finally, by following a certain dispatching period (e.g.,
15 minutes), we iterate all the candidate road segments for
each ambulance and determine the driving routes to the target
destination road segment of each ambulance that maximize the
weighting function. That is, maximize r(st, at).

V. PERFORMANCE EVALUATION

A. Comparison Methods

To evaluate MobiAmbulance’s performance (MA in short),
we compare its performances of fulfilling patient pick-up
requests and driving delay of fulfilling these requests with
a representative base station based ambulance redeployment
method [5] (Deploy in short), and a representative dynamic
ambulance scheduling method [13] (Schedule in short).

Specifically, Deploy aims to minimize the ambulances’
driving delay with a bounded risk (i.e., percentage of incidents
that have driving delays higher than a certain objective), and
deploys the ambulances to their respective optimal base station
(i.e., hospital) to cover emerging patient pick-up requests.
Once the ambulances are deployed to the optimal base station,
the available ambulance nearest to the request will drive to
the request position to serve the request. The drawback of this
method is that the deployment of hospitals may not be suitable
for standing by during catastrophic situations and may cause
long driving delays.

Schedule considers the distribution of the positions of
patient pick-up requests and aims to maximize the real-time
coverage of the requests through dynamically scheduling the
ambulances’ driving routes. The drawback of this method
is that it cannot update the driving route of the ambulance
according to the real-time road network connection status
and the changed distribution of patient pick-up requests after
disaster. Driving the “broken” road segments may cause the
ambulances to have high driving delays. For fair comparison,
we suppose the default deployment of hospitals in the three
methods follows the deployment of existing hospitals in Char-
lotte city.

B. Experiment Settings

We use the human mobility data described in Section
III-A to simulate the appearance of patient pick-up requests.
The value of γ affects the accuracy of determining whether
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Fig. 3: The average number of fulfilled patient pick-up requests.

a certain road segment is broken. To find the best val-
ue of γ, we vary the value within a certain range (e.g.,
[100 veh/hour, 500 veh/hour]) and test the performance. Then,
we choose the value that results in the minimum driving delay
to the patient pick-up requests as the final setting. We find
γ = 250 veh/hour is the best value for the case of Charlotte
city. We suppose that a patient pick-up request expires after
30 minutes since its appearance. We assume that the ratio of
patients over the whole population in Charlotte city is 5%. That
is, during each time, 5% of the population becomes patients
and needs ambulance service. We also suppose the pick-up
requests of these patients randomly appear within respective
time slots. Based on the deployment of existing hospitals in
Charlotte city, we used SUMO [23] to simulate the movement
of 500 ambulances for 24 hours on Charlotte’s road network.
We converted OpenStreetMap road network of Charlotte city
to a SUMO road network file.

The metrics we measured are:
•The average number of fulfilled patient pick-up requests: For

each ambulance, we measure the number of patient pick-up
requests it fulfilled in each time slot throughout a day. Then,
we measure the average number of fulfilled requests over
all the ambulances in each time slot. The purpose of this
metric is to compare the performance of different methods
in covering the patient pick-up requests.
•The average driving delay of the fulfilled requests: For

each fulfilled request, we measure the driving delay of the
ambulance that fulfills this request. Then, we measure the
average driving delay over all the fulfilled requests in each
time slot. The purpose of this metric is to compare the
performance of different methods in reducing the waiting
time of the patients before being picked up.

C. Experimental Results

1) The average number of fulfilled patient pick-up requests:
Figure 3 shows the average number of fulfilled patient pick-up
requests over all the ambulances during each time slot through-
out a day under different methods. We can see that the results
of MobiAmbulance is always much higher than the other meth-
ods. The results follow: MobiAmbulance>Schedule>Deploy.

In Deploy, the ambulances are deployed to wait at their
optimal base stations. Once a patient pick-up request appears,
the available ambulance nearest to the request will drive to the
request position. There is no specific method to dynamically
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Fig. 4: The average driving delay of the fulfilled requests.

arrange the driving route to let the ambulances keep approach-
ing the locations of the pick-up requests. The ambulances will
only be dispatched to certain base stations (i.e. hospitals) to
cover the requests appear nearby the hospital. Due to the effect
of disaster, many potential patients were trapped in somewhere
distant away from the coverage of the base stations. Therefore,
the ambulances in Deploy missed the most patient pick-up
requests.

In Schedule, the ambulances’ driving routes are dynamically
updated according to the appearance of potential patient pick-
up requests. The ambulances are always dispatched to the
driving routes that can cover the appearance locations of the
requests. Therefore, the ambulances in Schedule fulfilled much
more requests than those in Deploy. However, in determining
the driving route, Schedule cannot offer guidance based on the
actual road network connection status, but determine driving
route based on the road network status in normal situations.
This caused that some ambulances cannot reach their target
potential patients within the 30 minute expiration limit, and
still missed many requests.

In contrast, the updated road network graph generated by
MobiAmbulance offers the current connection status of the
road segments. When dispatching the ambulances, MobiAmbu-
lance can avoid the ambulances from driving through the
routes that will cause long driving delays. Also, the ambulance
dispatching system can always guide the ambulances to cruise
around the areas with possible appearance of potential patient
pick-up requests. Therefore, the ambulances of MobiAmbu-
lance can fulfill the most patient pick-up requests among the
methods.

2) The average driving delay of the fulfilled requests:
Figure 4 shows the average driving delays of the fulfilled
patient pick-up requests during each time slot throughout a
day under different methods. We can see that the results
of MobiAmbulance are much shorter than the other meth-
ods during most time slots. The results follow: MobiAmbu-
lance<Schedule<Deploy. These results are generally consis-
tent with those demonstrated in Figure 3. In Deploy, the
ambulances are deployed to wait at base stations before driving
to the patient pick-up request locations. Once a patient pick-up
request appears, the available ambulance nearest to the request
will drive to the request position. As mentioned in Section
V-C1, the hospitals are deployed based on normal patient
pick-up request appearance. During catastrophic situations, the
patient pick-up requests may not appear as in the normal

Fig. 5: VIMS’ street level model of maximum inundation extent along the
Neuse River at Oriental, NC, 32 km (20 miles) east of New Bern along the
Neuse River, where some of the highest precipitation measurements were
recorded during 2018 Hurricane Florence.

situations, so the ambulances have to spend the longest time
to transit from base stations to their target request locations.

VI. FUTURE DESIGN AND DEVELOPMENT
CONSIDERATIONS

Recent advancements in the application of computational
flood modeling technology have enabled hydrodynamic preci-
sion to hone in, calculate and predict the mass and movement
of flood waters to accurately predict water velocities at the
street-scale. Route guidance for emergency vehicles after a
major storm event typically involves situational inference
on behalf of the driver, and knowing which streets will be
flooded. Larger localities such as Charlotte will likely have an
environmental Geographic Information System (GIS) division
that can model flooding affects. These considerations will
be programmed into the dispatching and operational GIS
maps in sophisticated systems. Cross-scale sub-grid inundation
has seen a lot of improvements in the recent years which
can now generate spatial inundation maps within 36 hours
of a storm’s arrival. For example, the Virginia Institute of
Marine Science (VIMS) has developed a storm tide model
and mapping tool called “Tidewatch”. Figure 5 shows VIMS’
street level model of maximum inundation extent along the
Neuse River at Oriental, NC. Jointly considering the inferred
flooding situation for scheduling of emergency vehicles is
one of our future works. Morsy et al. [24] designed and
prototyped a cloud-based system to support decision makers
as they assess flood risk to transportation infrastructure during
extreme weather events. The system automates access and pre-
processing of forecast data, execution of a high-resolution 2D
hydrodynamic model, and map-based visualization of model
outputs.

MobiAmbulance has been designed with a focus to fulfill
end users’ (i.e., patients’) pick up demand. Though experi-
mental result of MobiAmbulance shows great technical feasi-
bility, its effectiveness as a disaster response/recovery solution
depends on how it will be utilized the users. Future design
and development activities may emphasize a participatory de-
sign approach to incorporate users, i.e., emergency managers,
emergency first responders (paramedics/EMTs), in the co-
design process to make the MobiAmbulance more relevant and
applicable to practice. Future work will enhance the utility of
MobiAmbulance to end users by shifting the focus of next
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phase design and development activities to the settings where
the technology will be used and embedding these activities
in the “lived work” of users, thus taking into account users’
needs, opinions, practices and habits [25] and social network
analysis [26]. Leveraging the ”lived experience” of the users
and incorporating the intricacies of their decision making
process will ensure greater acceptance of MobiAmbulance and
increased likelihood of its utilization.

Another scope for improvement is utilizing GPS data asso-
ciated with emergency vehicle/ambulance travel during and
following a disaster. Many ambulances are equipped with
GPS-based automatic vehicle locating (AVL) systems that
provide real-time information about their movement. GPS data
from these vehicles can be used to study their actual route
selection [27]. This important user input about ambulance
routing decisions “in practice” during disasters can further
inform MobiAmbulance design and development.

VII. CONCLUSION

Ambulance dispatching during disaster phase is of great
importance. Previous ambulance dispatching methods cannot
effectively handle catastrophic situation. Our proposed Mo-
biAmbulance is the first human mobility based ambulance
dispatching system that utilizes vehicle flow rate comparison
and ambulance dispatching based on weighted driving route to
maximize the total number of fulfilled patient pick-up requests,
and minimize the driving delay of the fulfilled requests. Our
analytical results on a state-scale human mobility dataset
provide foundation for the design of MobiAmbulance. We
develop a method that utilizes the comparison of vehicle
flow rate to determine the road network connection status
and the set of road segments that can still be driven through
by ambulances after disaster (called updated road network
graph). Based on the obtained updated road network graph, we
develop an ambulance dispatching method based on weighted
driving routes to maximize the total number of fulfilled patient
pick-up requests, and minimize the driving delays to fulfill the
pick-up requests. We conducted trace-driven experiments on
SUMO to verify the superior performance of MobiAmbulance
over other representative comparison methods.

In the future, we plan to build models for predicting
the appearance of patient pick-up requests by analyzing the
human mobility under catastrophic situations. Future design
and development activities will jointly consider the inferred
flooding situation for scheduling of emergency vehicles, and
emphasize a participatory design approach to incorporate
users in the codesign process to make the MobiAmbulance
more relevant and applicable to practice. Another scope for
improvement is utilizing GPS data associated with emergency
vehicle/ambulance travel during and following a disaster.
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