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Abstract—To comply with privacy regulations and self-
protection from cloud outages, increasingly more users are lever-
aging multiple cloud providers for service deployment. However,
due to the isolation of highly Non-Identically and Independently
Distributed (Non-IID) workload datasets and deficiencies of ex-
isting methods as reflected in our experimental studies, no cloud
providers can single-handedly capture the workload patterns
of such users for accurate workload prediction. Accordingly,
we propose P3Forecast, a Personalized Privacy-Preserving Cloud
workload prediction framework based on Federated Generative
Adversarial Networks (GANs), which allows cloud providers with
Non-IID workload data to collaboratively train workload predic-
tion models as preferred while protecting privacy. We first design
a data synthesis quality assessment method based on Dynamic
Time Warping (called pattern-aware DTW), which is insusceptible
to time series length and reliable for the comparison of temporal
patterns. By using pattern-aware DTW as the model aggregation
weights, we adopt the Federated Learning (FL) of a GAN model
for the augmentation of IID workload training datasets per
cloud provider. Then, we further design a post-training method
of local workload prediction models, which consists of a query
mechanism for extracting the most informative synthesized data
for training dataset augmentation and a learning rate adjustment
strategy for stable convergence. Extensive experiments driven by
real-world workloads demonstrate that compared with the state-
of-the-art, P3Forecast improves workload prediction accuracy by
19.5%-46.7% in average over all cloud providers, while ensuring
the fastest convergence in Federated GAN training.

Index Terms—Cloud Workload Prediction, Federated Learn-
ing, Generative Adversarial Networks

I. INTRODUCTION

With the popularity of new cloud applications (e.g.,
Machine-Learning-as-a-Service), workloads are becoming in-
creasingly heterogeneous and dynamic, which hinders the
accurate prediction of cloud workloads and predictive orches-
tration of cloud resources [1], [2].

Multiple traditional approaches have been developed for
workload prediction of individual cloud providers [1], [3]–
[6]. Generally, they utilize various Machine Learning (ML)
techniques, such as Autoregressive Integrated Moving Average
(ARIMA), Deep Neural Networks (DNN), to capture the
complex patterns and high-dimensional features of workloads.
However, as cloud providers aided by traditional workload pre-
diction paradigms often rely on isolated workload databases,
they may struggle to adapt to varying workload types. For ex-
ample, public cloud providers, such as Alibaba, have extensive
experience in handling ML workloads, but lack sufficient data
to learn patterns associated with scientific computing work-
loads [2]. Under such cases, traditional approaches are unable

to versatilely predict workloads covering various service cat-
egories, which makes it challenging for users to leverage the
workload prediction results for optimal deployment of their
applications across multiple cloud platforms [7].

Nevertheless, it is neither practical nor secure to share
workload traces across providers due to the high expense of
network transmission and risk of data privacy leakage [8], [9].
Federated Learning (FL) [10], which enables collaborative ML
model training without exposing participants’ privacy-sensitive
data, shines a light on establishing a versatile workload pre-
diction framework via collaboration across providers [7], [11].
Despite this, our preliminary studies (Section III-D) show that
the workloads of different cloud providers are often highly
Non-Identically and Independently Distributed (Non-IID) due
to their different cloud computing environments and diverse
business involvements, and may cause significant performance
drop in FL training [12], [13].

In recent years, numerous approaches have been proposed
to tackle Non-IID issues in FL [13]–[18]. Among them, the
methods leveraging shared Generative Adversarial Networks
(GANs) to augment FL training data, known as Virtual Ho-
mogeneity Learning (VHL), [15], [16], [19] stand out for
faster convergence and stronger generalization performance.
However, these methods mostly focus on tasks involving
spatial data (e.g., image classification task), and are therefore
unsuitable for cloud workload prediction, which relies on time
series data with abundant temporal features. Moreover, to aug-
ment the FL training data, these methods require participants
to share the base noise that covers all heterogeneous workload
features (e.g., CPU usage, requested memory amount) across
cloud providers, which is against the privacy regulations of
most cloud providers [7].

A possible solution is to train the GAN model in a FL
manner [20]–[25]. Thus, each client can use the trained GAN
model to synthesize IID training data. However, different from
the model aggregation strategy in classic FL tasks, of which
model updates are generally averaged or weight-averaged by
data quantity or data distribution discrepancy , the contribution
of clients in the FL training of time series GAN models
should be scored by the quality of synthesized time series
data for faster convergence and better data synthesis capability
[23], [24]. Although Dynamic Time Warping (DTW) has been
widely utilized to assess temporal data synthesis quality in
GAN-based data augmentation [26], [27], our experimental
studies in Sections III-E and III-F demonstrate that DTW is



unreliable for workload data synthesis quality assessment, and
existing methods are inefficient due to the lack of personal-
ization in data augmentation.

Considering that temporal features are vital for effective
workload data augmentation under Non-IID settings, while
existing methods suffer from unreliability in data synthesis
quality assessment and inefficiency in data augmentation, we
propose P3Forecast, a Personalized Privacy-Preserving Cloud
Workload Prediction framework based on Federated GAN,
which allows cloud providers with heterogeneous workload
data to collaboratively train workload prediction models ac-
cording to their preference while protecting privacy. Specifi-
cally, we first incorporate the measurement of the first-order
difference between time series and normalization into DTW
to ensure that our proposed data synthesis quality assessment
method (called the pattern-aware DTW) is insusceptible to
time series length and reliable for the comparison of temporal
patterns. Then, by using the pattern-aware DTW as the weight
of model updates from the cloud providers, we adopt FL
for the collaborative training of a GAN model, which can
be utilized by each cloud provider to synthesize its own IID
training data. Finally, we design a post-training method of
local workload prediction models, which consists of a query
mechanism for extracting the most informative synthesized
data for training dataset augmentation and a learning rate
adjustment strategy for stable convergence. Unlike most exist-
ing FL personalization methods that require consistent model
architectures across clients, P3Forecast allows each cloud
provider to specify its workload prediction model architecture
as preferred, which is especially suitable for cloud providers
with heterogeneous model preferences and data augmentation
preferences. The contributions are summarized as follows:
(1) We conduct extensive experimental studies on large-scale

workload datasets collected from seven cloud clusters or
centers to demonstrate the Non-IID nature of cloud work-
loads and deficiencies of existing methods in realizing the
collaborative training of workload prediction models.

(2) We propose P3Forecast, a personalized privacy-
preserving cloud workload prediction framework based
on Federated GAN. It utilizes a novel DTW-based data
synthesis quality assessment method for the aggregation
of Federated GAN models, which is both insusceptible
to sequence length and reliable for temporal pattern
comparison, and a post-training method of workload
prediction models, which employs a query mechanism
and a learning rate adjustment strategy for personalized
data augmentation and stable model training.

(3) We conduct detailed experiments on real-world
cloud workloads. Compared with the state-of-the-
art, P3Forecast drastically improves workload prediction
accuracy by 19.5%-46.7% in average over all cloud
providers, while ensuring the fastest convergence in
Federated GAN training.

The rest of this paper is organized as follows. Section II
summarizes related works. Section III presents preliminaries
and motivations. Section IV introduces the detailed design of

P3Forecast. Section V presents performance evaluation results.
Section VI concludes the paper with future remarks.

II. RELATED WORK

Traditional Cloud Workload Prediction. Early efforts gen-
erally utilize regression-based approaches for cloud workload
prediction. For example, Calheiros et al. [3] proposed an
ARIMA-based approach to predict future workloads generated
by web application requests. Kim et al. [1] proposed to
ensemble multiple predictors for cloud workload prediction.
Recent research mostly applies deep learning models (such as
Long Short-Term Memory (LSTM) [4] and Gated Recurrent
Units (GRU) [5], [6]) for cloud workload prediction. However,
due to limited and isolated data of individual cloud providers,
these methods cannot establish a versatile workload prediction
model capable of accurately predicting workloads covering
various service categories.
Data Heterogeneity in FL. Much research has focused on
mitigating Non-IID issues via optimizing model update di-
rection [13], [14]. Additionally, some methods utilize client
selection to mitigate non-IID issues [17], [18]. From the
perspective of data augmentation, some methods utilize shared
GANs to synthesize data for knowledge distillation [15] or
alleviating dataset shift [16]. However, these methods mostly
focus on spatial data tasks, and are therefore unsuitable for the
prediction of cloud workload time series data. Moreover, the
sharing of workload features across cloud providers is against
the privacy regulations of most cloud providers [7].
Federated GAN for Data Augmentation. The FL training
of GAN models has been proposed for IID data augmenta-
tion. Hardy et al. [20] proposed a distributed GAN training
method on clients with IID data. Rasouli et al. [21] extended
FL to GAN by using two time-scale learning rates for the
generator and discriminator of GAN. To address Non-IID
issues, Guerraoui et al. [22] proposed to utilize the Kullback-
Leibler distance between local and global label categories
as the FL aggregation weight. Zhang et al. [23] proposed a
FL framework for training GANs among clients with Non-
IID data. Li et al. [24] proposed to weigh clients’ GAN
model updates by their spatial data synthesis quality. Ma
et al. [25] proposed an unbiased Federated GAN scheme
to mitigate Non-IID issues. However, these Federated GAN
training methods are designed for spatial data tasks, thus
cannot be applied for the FL training of time series GAN
models due to the lack of a reliable metric for time series data
synthesis quality assessment.

III. PRELIMINARIES AND MOTIVATIONS

First, we present the detailed observations that motivate our
system design, which are based on the following datasets:
• Alibaba dataset [28]. It is collected from a large cluster

with over 4,000 machines in Alibaba data centers, span-
ning a period of 8 days in 2018, with a sampling period of
ten seconds. It contains the logs of Alibaba’s production
workloads, which record workload information such as
cpu util percent, mem util precent, etc.
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Fig. 1: Workloads of CPU and memory in four cloud providers.

• Microsoft dataset [29]. It is collected from Microsoft’s
Philly clusters with over hundreds of machines, spanning
from August to December of 2017, with a sampling
period of one minute. It contains the logs of >96,000
deep learning jobs, recording workload information such
as cpu util, mem util, etc.

• Google dataset [30]. It is collected from Google produc-
tion clusters with over 52,000 machines, which covers a
1-month time frame in 2011, with a sampling period of
five minutes. It contains the logs of Google’s production
workloads, which record workload information such as
job ID, mean CPU usage rate, etc.

• Alibaba-AI dataset [31]. It is collected from a large
production cluster with over 6,500 GPUs (on ∼1,800
machines) in Alibaba Platform for Artificial Intelligence,
spanning from July to August of 2020, with a sampling
period of ten minutes. It records workload information
such as cpu utilization, memory utilization, etc.

• HPC datasets. They are collected from three high per-
formance computing cloud service centers (HPC-KS,
HPC-HF and HPC-WZ) for academic research, where
the HPC-KS dataset spans from January to February of
2022 with a sampling period of ten minutes, the HPC-
HF dataset spans September in 2022 with a sampling
period of five minutes, and the HPC-WZ dataset spans
from January to October of 2022 with a sampling period
of half an hour. They contain the logs of scientific
computing, large-scale optimization or ML algorithms,
which record workload information such as anonymized
job cpu time, job mem used, etc.

Given the different information of the workloads, their
temporal pattern may be highly heterogeneous, which will be
illustrated with details in Section III-D.

A. Dynamic Time Warping

Given two time series x = {x1, . . . , xi, . . . , xn} and y =
{y1, . . . , yj , . . . , ym}, the DTW algorithm first calculates the
distance matrix D = {d(i, j)|1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m},
where d(i, j) is the Euclidean distance between xi and yj .
The objective of DTW is to find the optimal path from (1, 1)
to (n,m) with the minimum cost, which can be represented as
the following recurrence and solved by dynamic programming:

d̃(i, j)←d(i, j) + min{d̃(i− 1, j), d̃(i, j − 1),

d̃(i− 1, j − 1)}
(1)

where d̃(i, j) represents the cumulative distance of the optimal
path from (1, 1) to (i, j). Thus, the cumulative distance is the
sum of the distance between current elements (i.e., d(i, j)) and
the minimum of the cumulative distances of the neighboring
points (i.e., d̃(i − 1, j), d̃(i, j − 1) and d̃(i − 1, j − 1)).
Similarly, we can finally obtain the cumulative distance matrix
D̃ = {d̃(i, j)|1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m}, where d̃(n,m)
is the DTW distance between x and y. Although DTW
reflects the heterogeneity between workload sequences, it has
significant deficiencies when assessing data synthesis quality,
as elaborated in Section III-E.

B. Federated GAN

Given K clients holding regular GANs as their local model,
Federated GAN training aims to build a mapping function
that maps a random noise sub-space z from randomized space
Z into the overall workload data space of the clients X̄ =
∪K
k=1xk, where xk is the workload sub-space of the k-th client.

Thus, the objective function of the minimax game between the
discriminator D and the generator G is:

min
G

max
D

V (G,D) =

K∑
k=1

αk(Ex∼p(xk)[logDk(x)]+

Ez∼p(z)[log(1−Dk(Gk(z)))])

s.t.
K∑

k=1

αk =1

(2)

where αk represents the model update weight of the k-th
client, and Dk and Gk are the discriminator and generator of
the k-th client, respectively. p(xk) is the local data distribution
of the k-th client, while p(z) is the noise distribution. Albeit
effective in synthesizing IID data, existing Federated GAN
training methods, lacking consideration of temporal features,
are unsuitable for time series GAN model training.

C. Threat Model

We assume the FL server is honest-but-curious, which
means it will follow the protocol of FL, but is curious about
clients’ private data and uploaded content. We also assume that
the clients will use encryption (e.g. Homomorphic Encryption
(HE)) [32] or privacy preservation techniques (e.g., Differen-
tial Privacy (DP)) [17], [33] to protect gradient information
from inversion attacks [34]. The protection against other forms
of malicious activities (e.g., collusion, poisoning, backdoor
attacks) is not the focus of this work.
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Fig. 2: Heat map matrix of DTW
between CPU utilization time series.
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Fig. 3: Heat map matrix of DTW be-
tween memory utilization time series.

D. Heterogeneous Temporal Features of Workload Data
From dataset introduction, we have known that the work-

load representations of different cloud providers differ sig-
nificantly. For example, Microsoft uses cpu util to directly
represent CPU utilization of machines, while Google only
records CPU utilization per job. Hence, we need to combine
Google’s jobs by timestamp, and deduce the overall CPU
utilization of all machines. In addition, even for the same
resource, different cloud providers may use different names.
For example, Alibaba only uses mem util percent to rep-
resent memory utilization, while Google uses three features:
canonical memory usage, assigned memory usage and
maximum memory usage. Therefore, to illustrate the hetero-
geneous temporal features of workloads, we first preprocess
the datasets via aligning the representations of resources,
removing redundant features and min-max normalization.

Finally, we obtain several workload time series of the seven
cloud providers for further temporal feature heterogeneity
analysis. Figure 1 illustrates the CPU utilization and memory
utilization time series of four cloud providers over three days.
It can be seen that the workload time series of Alibaba-
AI follow obvious periodic patterns, while the workloads of
the other cloud providers do not follow regular patterns. To
confirm the data heterogeneity across the time series of all
the seven cloud providers, we further calculate the DTW
distances between the CPU utilization and memory utilization
time series of every pair of them, which are illustrated as heat
map matrices in Figure 2 and Figure 3, respectively. The darker
the color of the square corresponding to two clients, the more
dissimilar their workloads are. We can see that the workload
time series between most pairs of cloud providers are highly
dissimilar (i.e., Non-IID) in terms of DTW, especially for the
CPU utilization time series.

Challenge 1: given that the workload time series of different
cloud providers are Non-IID in temporal features, while
most existing FL solutions focus on spatial data, how to
design a federated data augmentation method capable of
synthesizing IID time series data?

E. Deficiency of DTW in Assessing Data Synthesis Quality
Although DTW can reflect the heterogeneity between work-

load sequences, it has two significant deficiencies when ap-
plied for assessing data synthesis quality: 1) DTW is suscep-
tible to the length of time series, and 2) DTW overlooks the
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Fig. 4: Susceptibility of DTW to the length of time series.

comparison of patterns between time series, which may make
it unreliable for measuring the similarity of temporal patterns.

We use a toy example to illustrate the first deficiency. From
the description of datasets, we can see that the workload
time series of different cloud providers generally have various
lengths due to different sampling frequencies and total time
durations. Following these observations, we prepare two sets
of signals that have different lengths due to the same factors.
Specifically, the first set of signals are generated by functions
y1 = sin 2πt and y2 = 0.1 sin 2πt, with a sampling frequency
of 50 and an end point at t = 2, as shown in Figure
4a. The second set of signals are generated by functions
y′1 = sin 2πt and y′2 = 0.8 sin 2πt, with a sampling frequency
of 500 and an end point at t = 2.5, as shown in Figure 4b.
Intuitively, the similarity between y′1 and y′2 is higher than
that between y1 and y2 as the amplitude difference between
y′1 and y′2 is obviously much lower than that between y1 and
y2. However, the calculated DTW distance between y1 and
y2 is 57.75, while the DTW distance between y′1 and y′2 is
72.58, which contradicts the straightforward intuition. This is
primarily because that DTW measures the sum of absolute
differences between the time series, so the measurement result
is dependent on the length of the time series. Suppose the
lengths of two sequences for DTW calculation are n and m.
Possible solutions for fairly assessing data synthesis quality
across cloud providers include normalizing DTW by n +m,
max{n,m} or the warping path. In our case, since we set that
the synthesized and original workload sequences have equal
lengths (i.e., n = m), we simply normalize their DTW by
max{n,m} (i.e., unit-length DTW distance). For example, the
unit-length DTW distance between y′1 and y′2 is 0.058, while
the unit-length DTW distance between y1 and y2 is 0.578,
which is consistent with the intuitive observation.

For the second deficiency, we use two additional toy ex-
amples to illustrate the intrinsic reason. In the following, the
sampling frequency and the end point of all signals are 50
and t = 1, respectively. Suppose we have a set of signals
generated by functions y1 = 8(t− 0.5)2 − 1, y2 = 0.5 cos 2πt
and y3 = 0.5 cos 2πt+0.6, as shown in Figure 5a. Intuitively,
the similarity of temporal patterns between y1 and y2 is
approximate as that between y1 and y3, as y3 is actually
y2 displaced by 0.6 along the Y-axis. However, the DTW
distance between y1 and y2 is 11.14, while the DTW distance
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(d) ȳ4 and ȳ5 overlap after normalization.

Fig. 5: Unreliability of DTW in pattern similarity measurement of time series.

between y1 and y3 is 29.94. This is primarily because that as a
distance metric, the DTW algorithm essentially computes the
distance from the matching of similar elements between time
series, but overlooks the comparison of patterns. Traditional
methods [35]–[38] generally utilize the Z-score normalization
to eliminate the influence of displacement: ȳ = y−µ

δ , where y
and ȳ are the original and normalized time series, respectively,
µ and δ are the mean and standard deviation of y, respectively.
For example, as illustrated in Figure 5b, the Z-normalized y2
and y3 (denoted as ȳ2 and ȳ3) completely overlap, of which
DTW distances to y1 are both 10.78.

However, Z-score normalization does not work in all cases.
Specifically, suppose in Figure 5c, we have another set of
signals for pattern similarity comparison with y1, which are
generated by functions: y4 = 0.5 cos 2πt and y5 = cos 2πt.
As we can see in Figure 5d, although the patterns of y4
and y5 are obviously quite different, the Z-normalized y4 and
y5 (denoted as ȳ4 and ȳ5) also completely overlap, which is
incorrect. This is mainly because that Z-score normalization
scales the original time series amplitude by mean and standard
deviation, which may cause time series with different patterns
to be mistakenly scaled into the same waveform.

Challenge 2: given the deficiencies of DTW, how to design
a fair data synthesis quality assessment method that is
insusceptible to sequence length discrepancy across cloud
providers and reliable for temporal pattern comparison?

F. Impact of Training Dataset Size on Workload Prediction
Model Convergence

Generative Adversarial Active Learning (GAAL) is effective
in augmenting data according to specific criteria of the learner
[39]–[42], which is potentially suitable for the personalization
of workload prediction model per cloud provider. Specifically,
it uses GANs to synthesize informative data samples that
are adapted to the workload prediction model. Then, the
synthesized data is queried by a certain criterion and added
back to the training dataset to update the workload prediction
model. This protocol is executed iteratively until the pre-
defined termination conditions are reached.

To guarantee the convergence of workload prediction model
training, the ratio of synthesized data samples must be signifi-
cantly higher than that of the local original data samples within
the overall training dataset [43]. This means that the amount
of data samples added to the training dataset per iteration
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Fig. 6: Convergence speed under varying φk values in Alibaba and Microsoft.

must be comparable to that of the local original data samples.
Under such cases, the learning rate may need to be adjusted
accordingly with the amount of added data samples to maintain
the stability of convergence.

To verify our conjecture, we conduct a GAAL experiment.
We first use the CPU utilization and memory utilization work-
load data of all cloud providers to train a TimeGAN model
[44] for workload data synthesis. Then, we add the synthesized
data samples to the training dataset of each cloud provider as
in GAAL, but with varying ratios of synthesized data samples.
Specifically, the ratio of the k-th cloud provider is denoted as
φk = |Gk(z)|

|xk| , where Gk(z) represents the synthesized data
samples, xk represents the local original data samples, and
| · | represents the amount of data samples. Finally, we train a
GRU network under φk = 0, 2, 4, and calculate the Root Mean
Square Error (RMSE =

√
1
n

∑n
i=1(Predictedi − Actuali)2) of

the prediction results. The GRU network consists of one input
layer with the size of 2, one hidden layer with 512 hidden
units, and one output layer with the size of 2. The number
of training epochs is 30, and the learning rate is 0.001. The
testing dataset is built by extracting a fixed portion of local
workload data samples from each cloud provider.

Figure 6 illustrates the change of RMSE along with the
training progress in two cloud providers under varying φk

values. We can see that in Alibaba, the convergence curves
under different φk values are quite divergent, which means
that the model training on Alibaba’s dataset is sensitive to
the change of φk. Moreover, when φk = 4, the RMSE curve
in Alibaba oscillates significantly. This is primarily because
that with the increase of synthesized data samples that follow
the patterns of other cloud providers, the model parameter
update direction differs from the training purely conducted on
local original data samples. The static learning rate is probably



sub-optimal for the case with φk = 4, which causes the
model training to repeatedly overshoot the optimal solution.
In contrast, the convergence curves in Microsoft are much
more stable and insensitive to the change of φk. Therefore, the
learning rate does need to be adjusted according to the amount
of added data samples to maintain the stability of workload
prediction model convergence during training.

Challenge 3: given traditional approaches (e.g., [45], [46])
can only adjust learning rates according to the number of
epochs or gradient information, how to design a training
approach of prediction models that adjusts learning rate in
accordance with the training dataset size?

IV. SYSTEM DESIGN

Suppose the collaborative training of workload prediction
models involves K cloud providers (clients), which have
highly Non-IID workload datasets. P3Forecast consists of the
following three stages as shown in Figure 7:

1. Workload Data Synthesis Quality Assessment (Section
IV-A). First, given the local workload time series and a synthe-
sized workload time series, each client calculates the distance
matrix, which reflects both the temporal value discrepancy
and pattern similarity between the two time series. Then,
each client obtains its cumulative distance matrix via dynamic
programming as in Equation (1). Finally, by normalizing
the minimum cumulative distance into the unit-length DTW
distance, each client obtains its pattern-aware DTW as the data
synthesis quality assessment result.

2. Federated GAN Training based on Data Synthesis
Quality (Section IV-B). By using the pattern-aware DTW as
the weight of model updates from the cloud providers, the FL
server aggregates the generators and discriminators to train
the global GAN model, which captures the workload features
of all the clients. Upon the completion of FL training, the
FL server sends the trained global generator to the clients for
workload data synthesis.

3. Post-Training of Local Workload Prediction Models
(Section IV-C). After receiving the trained generator, each
client first uses it to synthesize data samples, and extracts
the most informative ones by a query mechanism. Then,
each client adds the queried data samples back to its training
dataset, and adjusts the learning rate in accordance with the
training dataset size. Upon the completion of the post-training,
each client obtains its personalized workload prediction model.

A. Workload Data Synthesis Quality Assessment

Given the effectiveness of DTW in measuring time series
heterogeneity and its deficiencies illustrated in Section III-E,
we aim to make it insusceptible to time series length and
reliable for the comparison of temporal patterns. Considering
that the first-order difference reflects the volatility of a time
series x (defined as ∇xi = xi − xi−1) [47], which measures
the magnitude of growth or decline at each time point (i.e.,
change pattern), we incorporate it in DTW for data synthesis
quality assessment, which is called the pattern-aware DTW.
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Specifically, given two time series x and y with the lengths
of n and m, respectively. Suppose the first-order differences of
two time series x and y at the i-th and the j-th time points are
∇xi and ∇yj , respectively. Instead of directly calculating the
Euclidean distance between xi and yj as the element d(i, j)
in the distance matrix D (Section III-A), we additionally
calculate the Euclidean distance between ∇xi and ∇yj , and
use it as d(i, j) if the patterns of x and y are comparable at
the respective time points. By saying comparable, we mean
∇xi and ∇yj have identical signs (i.e., ∇xi∇yj > 0) or
their absolute difference is smaller than a threshold (i.e.,
|∇xi −∇yj | < ϵ). The rationale is that when ∇xi and ∇yj
are comparable, we prefer D to reflect the similarity between
patterns rather than the distance between points in the time
series. Thus, in pattern-aware DTW, d(i, j) is calcualted as:

d(i, j) =

{
|∇xi −∇yj | , ∇xi∇yj > 0 ∨ |∇xi −∇yj | < ϵ

|xi − yj | , otherwise.
(3)

Note that the threshold ϵ (e.g., 0.001) is set to ensure
that ∇xi and ∇yj are sufficiently approximate when they
have different signs, which can be adjusted according to spe-
cific workload data synthesis quality assessment requirements.
Then, we obtain the minimum cumulative distance between x
and y, i.e., d̃(n,m), via dynamic programming as in Equation
(1). Finally, as illustrated in Section III-E, to make pattern-
aware DTW insusceptible to time series length, the distance
between x and y is calculated as DTWp(x,y) =

d̃(n,m)
max{n,m} ,

i.e., unit-length distance. Thus, DTWp(x,y) reflects both
their distance between temporal values and similarity between
temporal patterns regardless of their lengths. The workflow
of calculating the pattern-aware DTW distance is illustrated
in “Stage 1” of Figure 7, where the heatmap shows the
cumulative distance matrix between the original workload
sequence (red) and the synthesized one (blue), which have
equal lengths. The element highlighted with the red square is
d̃(n,m). After normalizing it by max{n,m}, it represents the



pattern-aware DTW distance between the two sequences.

B. Federated GAN Training based on Data Synthesis Quality

According to Section III-D, we have known that the work-
load data in different cloud providers is Non-IID. If we directly
utilize the data for FL training of workload prediction models,
the obtained models may suffer from severe performance
degradation [12], [13]. Instead, we let the clients collabora-
tively train a GAN model via Federated GAN training as
described in Section III-B, which can be utilized by each client
to synthesize its own IID training data.

However, the traditional Federated GAN training methods
cannot adequately attend to the temporal features unique to
time-series data. Considering that the pattern-aware DTW
distance between the workload data of each cloud provider
(denoted as xk) and the data synthesized by the local GAN
model at the t-th training round (denoted as Gt

k(z)), i.e.,
DTWp(xk, G

t
k(z)), reflects their discrepancy in temporal fea-

tures (i.e., data synthesis quality), we use it to weigh the
model updates in Federated GAN training. Specifically, as
DTWp(xk, G

t
k(z)) actually measures the unit-length distance

(i.e., the larger it is, the less similar xk is to Gt
k(z)), we take its

reciprocal DTW−1
p (xk, G

t
k(z)) as their similarity. Moreover,

as the pattern-aware DTW distances of the K cloud providers
are measured on different scales and independent of each other,
we let the aggregation server normalize them as:

αk =
DTW−1

p (xk, G
t
k(z))∑K

k=1 DTW−1
p (xk, Gt

k(z))
. (4)

Additionally, to avoid the vanishing gradient problem (i.e.,
when the discriminator is much more powerful than the
generator, the generator always fails to produce convincing
data samples [22]), we simultaneously aggregate the local
discriminators and generators of the K cloud providers during
FL training, ensuring that they have the same power in
confronting each other. By following the objective defined
in Equation (2), the aggregation of local discriminators and
generators at the t-th round can be described as:{

Dt ←
∑K

k=1 αkD
t
k

Gt ←
∑K

k=1 αkG
t
k

(5)

After aggregation, the global generator G is optimal if and
only if it has learned the temporal features of all data samples.
That is, the data space of G covers the overall workload data
space of all the cloud providers (i.e., X̄ = ∪K

k=1xk). Note that
since the aggregation step in Equation (5) is independent of
model specifics, it can be actually applied to any existing GAN
model architectures. The workflow of our proposed Federated
GAN training method is illustrated in “Stage 2” of Figure 7.

C. Post-Training of Local Workload Prediction Models

Although the global generator is trained with all the work-
load data across clients, each client only needs the most
informative synthesized data samples that can augment its
training dataset. To realize this goal, we develop a post-training
method of local workload prediction models by following the
rationale of GAAL [39]–[42]. The method utilizes the trained

generator to synthesize data samples, and applies a novel query
mechanism to filter out the ones that are detrimental to the
training of the workload prediction model per client.

Specifically, suppose Xk represents the overall training
dataset of the k-th cloud provider, which consists of the data
synthesized by the trained global generator (G(z)) and the
cloud provider’s local original data (xk). In the first round of
post-training, each cloud provider trains the prediction model
with only local workload data to mitigate or prevent overfit-
ting. For the subsequent rounds, each cloud provider first uses
the trained global generator to synthesize data G(z), which
has the same length as xk. Then, each cloud provider tests the
newly synthesized G(z) with its workload prediction model,
calculates the RMSE of each data sample, and queries high-
quality synthesized data samples by the following criterion:

Qk =

{
G(z)

∣∣∣∣ RMSE(G(z), Ĝ(z)) ⩽ RMSE(Xk, X̂k)
and xk ⊊ Xk or xk = Xk

}
(6)

where Qk is the query result, Ĝ(z) and X̂k are the outputs
of the local workload prediction model with G(z) and Xk as
the inputs, respectively. The criterion means that the queried
data samples must either improve the training data quality in
terms of RMSE (i.e., RMSE(G(z), Ĝ(z)) ⩽ RMSE(Xk, X̂k)
and xk ⊊ Xk), or augment the training dataset for the first
time (i.e., xk = Xk). Next, each cloud provider merges
the queried high-quality synthesized workload data into the
training dataset as Xk = Xk ∪Qk.

With the progress of post-training, the size of Xk will
gradually grow. From Section III-F, we have known that the
training dataset size has varying impact on model convergence
for different cloud providers. Therefore, we design a personal-
ized strategy that adjusts learning rate in accordance with the
training dataset size. On the one hand, we expect the learning
rate to gradually decrease as the training dataset size increases,
in order to maintain the stability of model convergence. On the
other hand, we don’t expect the learning rate to decrease too
fast, as an excessively low learning rate could lead to model
under-fitting. Therefore, given the ratio between the amount of
synthesized data samples and the amount of local data samples
of the k-th cloud provider (i.e., φk), we use an exponential
function of φk to scale the learning rate ηk as:

ηk = η0e−µkφk (7)

where η0 is the initial learning rate, and µk is the constant
controlling the impact of the training dataset size on the
learning rate. To determine the optimal µk for each cloud
provider, we vary µk within a range (e.g., [0, 0.3]), and
post-train workload prediction models under each µk value
per cloud provider. Then, the optimal µk yielding the lowest
RMSE is selected for each cloud provider. The post-training
workflow of local workload prediction models is shown in
“Stage 3” of Figure 7.

It is worth noticing that unlike most existing FL personaliza-
tion methods that require consistent model architectures across
clients, P3Forecast grants clients high flexibility in indepen-
dently specifying prediction model architectures (e.g., LSTM,



Algorithm 1: Workflow of P3Forecast.
1 Server executes:
2 Initialize the global GAN model D0 and G0;
3 for each round t = 1, 2, . . . do
4 for k = 1 to K in parallel do
5 Dt

k, G
t
k,DTWp(xk, G

t
k(z)) =

ClientUpdate(Dt−1, Gt−1);

6 for k = 1 to K do

7 αk =
DTW−1

p (xk,G
t
k(z))∑K

k=1
DTW−1

p (xk,G
t
k
(z))

;

8 Aggregate local GAN models by Equation (5);

9 for k = 1 to K in parallel do
10 ClientPostTraining(G);

11 Clients execute:
12 Initialize local prediction model;
13 ClientUpdate(Dt−1, Gt−1):
14 Set Dt−1

k = Dt−1, Gt−1
k = Gt−1;

15 for each epoch e = 1, 2, . . . do
16 Dt

k, G
t
k ← Update local GAN model with xk;

17 Synthesize workload data Gt
k(z);

18 Calculate DTWp(xk, G
t
k(z)) as in Section IV-A;

19 return Dt
k, G

t
k,DTWp(xk, G

t
k(z));

20 ClientPostTraining(G):
21 for each round t = 1, 2, . . . do
22 Synthesize data with |G(z)| = |xk|;

23

Qk ← Query G(z) by Equation (6) ;
Xk ← Xk ∪Qk;
ηk ← Update ηk as Equation (7);
Train workload prediction model with Xk using ηk;

Transformers, etc.) according to their own needs, which is
especially suitable for cloud providers with heterogeneous
model preferences and data augmentation preferences.

Finally, the workflow of P3Forecast is summarized as
Algorithm 1. At Lines 2 and 12, the server and clients
initialize the global GAN model and local prediction models,
respectively. At Lines 4-5 and Lines 13-19, each client updates
its GAN model with its original workload data xk, synthesizes
data Gt

k(z), and computes the pattern-aware DTW distance
DTWp(xk, G

t
k(z)) as in Section IV-A. At Lines 6-8, the server

aggregates the clients’ local GAN models as in Section IV-B.
At Lines 9-10 and Lines 20-24, each client uses the trained
global generator to augment its training dataset and post-trains
its workload prediction model as in Section IV-C.

D. Security Analysis

The previous methods using shared GANs for FL training
data augmentation [15], [16], [19] require participants to share
the base noise that covers all the heterogeneous data features
across clients, which may cause privacy leakage and violate
the privacy regulations of most cloud providers [7]. In contrast,
the clients in P3Forecast only upload GAN model parameters
and the data synthesis quality assessment result DTWp to the
FL server for normalization and model aggregation. For the
former, P3Forecast can refer to various privacy preservation
schemes (e.g., HE, DP) to prevent adversaries from accessing
the actual model parameters. For the latter, DTWp is a scalar

value and does not contain any privacy-sensitive information.
Therefore, P3Forecast can ensure the privacy protection of
clients while allowing the collaborative training of GAN
models for IID training data augmentation, and personalization
of local workload prediction models.

V. PERFORMANCE EVALUATION

A. Comparison Methods

For the evaluation of workload prediction accuracy, we
compare P3Forecast with the vanilla FedAvg framework [10],
a representative FL framework for tackling heterogeneity [14]
(denoted as FedProx), and a GRU-based cloud workload
prediction model (denoted as GRU) [6], which serves as the
baseline. Specifically, FedAvg weighs and aggregates clients’
model updates by data quantity. FedProx introduces a proximal
term to penalize the deviation between local models and the
global model. GRU exploits a sliding window and a revised
GRU neural network for cloud workload prediction. Note
that GRU trains workload prediction models for each cloud
provider via solely using its local data.

For convergence analysis, we compare P3Forecast with a
popular GAN variant (denoted as IFL-GAN) [24]. and the
vanilla FL GAN (denoted as Baseline) [20]. Specifically, IFL-
GAN aims to train a globally shared GAN model via aggre-
gating the generators’ model updates trained on the clients’
local data, of which data synthesis quality is assessed in terms
of the Maximum Mean Discrepancy (MMD). In Baseline, the
GAN model parameters are directly aggregated by the FedAvg
algorithm [10], of which weights are determined according
to the quantity of data samples per client. To illustrate the
effectiveness of our proposed pattern-aware DTW distance,
we also evaluate the convergence performance of a variant of
P3Forecast, which simply uses the DTW distance in FL model
aggregation (denoted as P3Forecast-DTW).

B. Experimental Settings

Datasets. The datasets for experiments are the same as
in Section III. Specifically, we use the first 70% as the
local training dataset per cloud provider. Since there is no
available cross-cloud workload dataset covering various types
of workload patterns, we extract the remaining 30% workload
data from each cloud provider to build the testing dataset.

Models. For fairness, we select the TimeGAN model ar-
chitecture [44] for all the comparison methods that use GAN
for workload data synthesis. Specifically, both the embedding
network and the generator use a GRU network consisting
of one input layer with the size of 2, three hidden layers
with 256 hidden units and one output layer with the size of
256. The recovery network uses a GRU network consisting
of one input layer with the size of 256, three hidden layers
with 256 hidden units and one output layer with the size of
2. The discriminator uses a GRU network consisting of one
input layer with the size of 256, three hidden layers with
256 hidden units and one output layer with the size of 1.
Moreover, considering that the comparison methods do not
grant clients the flexibility of specifying their own workload
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Fig. 8: Workload prediction accuracy on different cloud providers (normalized
by the RMSE of P3Forecast).

prediction models as in P3Forecast, we let all cloud providers
use the same GRU network as the prediction model for fair
evaluation, which consists of one input layer with the size of
2, one hidden layer with 512 hidden units, and one output
layer with the size of 2. We set ϵ in Equation (3) to 0.001.

Implementation. We conduct evaluations on a Linux server
with 2 GeForce RTX 3090 GPUs, 1 Intel Xeon CPU, and 256
GB memory. We implement our framework with PyTorch. The
FL clients are Alibaba, Microsoft, Google, Alibaba-AI, HPC-
KS, HPC-HF and HPC-WZ.

C. Experimental Results

1) Workload Prediction Accuracy: In this section, we
evaluate the performance of different methods in terms of
workload prediction accuracy. Specifically, in GRU, the cloud
providers separately train their prediction models with their
isolated workload data for 30 epochs. In FedAvg and FedProx,
the global FL training is conducted for 6 rounds with 5 local
training epochs per round. The hyper-parameters of these
comparison methods are fine-tuned to reflect their optimal
performance. In P3Forecast, the global FL training of the
TimeGAN model is conducted for 10 rounds with 500 local
training epochs per round. The post-training of the local
prediction model is conducted for 6 rounds, during which the
local prediction model is trained for 5 epochs per round with
the workload data synthesized by the trained TimeGAN model.
In this way, we heuristically set max(φk) = 5 as in [43] for the
balance between model performance and data augmentation
computation overhead, and leave the sensitivity analysis of
varying φk to future extensions. In all the methods, the batch
sizes for the training of the GRU and TimeGAN models are
128, while the lengths of observation time step for the two
models are 64 and 65, respectively. In the TimeGAN model,
the first 64 time steps are used as the input and the last 1 time
step is used as the output. We employ the Adam optimizer
[46] for both the GRU and TimeGAN models, using an initial
learning rate of 0.001 and beta values of 0.9 and 0.999,
respectively. µk is uniformly set to 0.1 in this experiment.

For each cloud provider, we measure the average RMSEs
of workload prediction results on CPU utilization and mem-
ory utilization in different methods, which are illustrated in
Figure 8. For the convenience of comparison, all RMSEs
are normalized by the RMSE of P3Forecast. The overall
performance across all the cloud providers generally follows:
P3Forecast <FedProx<FedAvg<GRU. We can observe that all

TABLE I: Change of RMSEs under various µk values.

Cloud
Providers

µk

0 0.05 0.1 0.2 0.3

Alibaba 0.0681 0.0711 0.0660 0.0669 0.0674

Microsoft 0.0844 0.0829 0.0802 0.0835 0.0864

Google 0.0677 0.0649 0.0707 0.0668 0.0714

Alibaba-AI 0.0574 0.0591 0.0513 0.0491 0.0524

HPC-KS 0.0788 0.0747 0.0788 0.0815 0.0826

HPC-HF 0.0879 0.0863 0.0834 0.0870 0.0955

HPC-WZ 0.0926 0.0812 0.0859 0.0885 0.0922

Average 0.0767 0.0743 0.0738 0.0748 0.0783

the FL-based methods (i.e., FedAvg, FedProx, and P3Forecast)
outperform GRU in almost all the cloud providers. This is
primarily because that in GRU, the prediction models are
separately trained per cloud provider with its isolated workload
dataset. Thus, on the testing dataset with various workload
patterns, the trained models of most cloud providers cannot
achieve comparable performance as the ones collaboratively
trained with the FL algorithms. Moreover, we can notice that
the performance of GRU is especially bad on Google, which is
due to the singular workload patterns of Google compared to
the other cloud providers. The prediction model solely trained
on Google’s data has insufficient knowledge on the workload
patterns of the other cloud providers, and hence result in the
model’s inferior performance on the testing dataset.

We can also observe that the RMSEs of workload predic-
tion results in FedAvg and FedProx are quite approximate.
This is mostly because that in these methods, the prediction
models trained via FL are not personalized according to the
heterogeneity degree of local data. For the cloud providers that
already have a rich variety of workload patterns, the patterns
learned from the others may actually deteriorate their model
performance (e.g., Alibaba-AI).

In contrast, P3Forecast is 15.6%, 18.5% and 42.0% more ac-
curate in average over all the cloud providers when compared
with FedProx, FedAvg and GRU, respectively. For the cloud
providers with relatively more singular workload patterns,
(e.g., Google), P3Forecast can achieve as much as 99.3%
improvement in accuracy compared to GRU. The significant
performance improvement can be attributed to our proposed
Federated GAN training method based on workload data
synthesis quality assessment, which ensures the capture of
cross-cloud workload patterns in data synthesis, and post-
training of workload prediction models, which ensures the
personalized augmentation of training data according to the
heterogeneity degree of cloud providers’ local data. As a result,
P3Forecast can effectively mitigate data heterogeneity while
enjoying the workload patterns contributed across the clouds.

2) Effectiveness of Learning Rate Adjustment: Recall that
µk controls the impact of the training dataset size on the
learning rate in Equation (7). Considering that in Section
III-F, we have known that different cloud providers have
various sensitivities to the change of φk, we conjecture that the
optimal µk values also vary on the cloud providers during post-
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Fig. 9: Workload prediction accuracy using the optimal µk per cloud provider.

training. To confirm this, we investigate the impact of various
µk values on model performance in P3Forecast. Specifically,
we set µk to 0, 0.05, 0.1, 0.2 and 0.3 during the post-training
of workload prediction models for each cloud provider, and
measure the RMSEs of prediction results, which are shown in
Table I. The optimal µk values resulting in the lowest RMSE
are highlighted in bold.

First, we can observe that when µk = 0 (i.e., the learning
rate is fixed to η0 in Equation (7)), none of the cloud providers
can harvest the prediction results with the lowest RMSE.
Some cloud providers even suffer from >14% increase in
RMSE (e.g., Alibaba-AI and HPC-WZ). This means that the
adjustment of the learning rate in accordance with the training
dataset size is necessary. We can also notice that when µk is
significantly large (e.g., µk > 0.2), the RMSEs of all the cloud
providers deteriorate as well. This is mainly because that a
larger µk value causes the learning rate to decrease sharply as
the training dataset size grows, leading to model underfitting.

Due to the heterogeneity of workload data, the cloud
providers have varying optimal µk values, which concentrate
between 0.05, 0.1 and 0.2. To illustrate the effectiveness of the
proposed learning rate adjustment method, we further compare
the workload prediction accuracy of P3Forecast, which uses
the optimal µk per cloud provider in post-training, with the
others. As 0.1 is already the optimal µk value for Alibaba,
Microsoft and HPC-HF, we only update prediction RMSEs
of the other cloud providers. Figure 9 illustrates their updated
prediction RMSEs, normalized by that of P3Forecast. Com-
pared with Figure 8, the improvements resulted from using
the optimal µk values are marked with orange segments. We
can see that after adjusting the µk values in P3Forecast, all the
cloud providers enjoy varying degrees of improvement on pre-
diction accuracy. Especially for HPC-WZ, where P3Forecast
underperforms FedProx when µk is uniformly set to 0.1, but
outperforms the others after adjusting µk to 0.05. In summary,
when using the optimal µk value per cloud provider in post-
training, P3Forecast is 19.5%, 22.4% and 46.7% more accurate
in average over all the cloud providers when compared with
FedProx, FedAvg and GRU, respectively.

3) Convergence Analysis of Federated GAN Training:
We further evaluate the convergence performance and data
synthesis quality of the methods. We use MMD as the metric
of data synthesis quality, of which change along with the
training progress can effectively reflect how well the methods
converge [48]–[50]. Specifically, the MMD between the local
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Fig. 10: Convergence performance of different methods.

data x and the synthesized data G(z) is calculated as:
MMD = sup

∥∥Ex∼p(xk)[ϕ(x)]− Ez∼p(z)[ϕ(G(z))]
∥∥2

, (8)

where ϕ(·) is the Gaussian kernel function. A lower MMD
indicates a better data synthesis quality. During the training
of the Federated GAN models in each method, we record
the MMD between x and G(z) every 100 epochs, which is
illustrated in Figure 10. We can see that in the first 1300
epochs, IFL-GAN, P3Forecast and P3Forecast-DTW converge
conspicuously faster than Baseline, which confirms the ef-
fectiveness of taking into account data synthesis quality in
the weighing and aggregation of model updates in Federated
GAN training. However, after 1300 epochs, P3Forecast and
P3Forecast-DTW converge faster and finally stabilize at better
MMD scores than IFL-GAN. This is primarily because that
although MMD is effective in measuring the dissimilarity
between sample distributions, it neglects the temporal features
unique to time-series data. What’s more, we can also notice
that P3Forecast quickly stabilizes at around 1800 epochs,
while P3Forecast-DTW has to spend more than 4000 epochs
to achieve a comparable MMD level. This can be attributed to
our proposed pattern-aware DTW, which enables the trained
GAN model to synthesize data that is similar to the real one
not only in temporal distance, but also in patterns.

VI. CONCLUSION

In this paper, we have extensively demonstrated the high
Non-IID nature of cloud workloads and the deficiencies of
existing methods in realizing collaborative training of work-
load prediction models. To address the issues, we proposed
P3Forecast, a personalized privacy-preserving cloud workload
prediction framework that extends DTW for data synthe-
sis quality assessment, adopts Federated GAN for training
data augmentation across cloud providers, and personalizes
the workload prediction model per cloud provider via post-
training. Our experiments conducted on real-world workloads
showed that compared with the state-of-the-art, P3Forecast
drastically improved workload prediction accuracy by 19.5%-
46.7% in average over all cloud providers, while ensuring the
fastest convergence in Federated GAN training. In the future,
we plan to focus on adaptive adjustment of µk and φk via
Bayesian optimization or Reinforcement Learning to further
increase the prediction accuracy of workloads.
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