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Abstract—Previous passenger demand inference methods have
insufficient accuracy because they fail to catch the influence of
all random factors (e.g., weather, holiday). Also, existing taxicab
dispatching methods are not directly applicable for electric
taxicabs because they cannot optimize their charging. We present
CD-Guide: an electric taxicab dispatching and charging approach
based on customized training and Reinforcement Learning (RL).
We studied a metropolitan-scale taxicab dataset, and found:
histogram of passengers’ origin buildings (i.e., where they come
from) is useful for selecting suitable training data for inference
model, passenger demand in different regions may be influenced
by various unpredictable random factors, and taxicabs’ charging
time must be considered to avoid missing potential passengers. By
saying suitable historical data, we mean the data that are under
the influence of random factors similar as current time. Then, we
develop a RL based method to guide a taxicab to maximize its
probability of picking up a passenger, minimize the number of
its missed passengers due to charging, and meanwhile avoid the
taxicab from battery exhaustion. Qur trace-driven experiments
show that compared with previous methods, CD-Guide increases
the total number of served passengers by 100%.

I. INTRODUCTION

In recent years, with ubiquitous mobility data harvested
from the movement of the taxicabs, multiple urban passenger
demand inference methods have been proposed [1], [2], [3],
[4]. Generally, these methods utilize time series prediction
methods (e.g., Autoregressive Integrated Moving Average
(ARIMA)) or deep learning methods (e.g., Convolutional Neu-
ral Networks (CNN)) to learn taxicab passenger appearance
pattern based on historical passenger pick-up records, and use
the learned pattern to infer future passenger demand (i.e.,
the number of passengers at a future timestamp) at certain
locations. However, they have insufficient accuracy because
they fail to catch the influence of all random factors (e.g.,
weather, holiday). For example, suppose there is an electricity
outage in a holiday parade, there may be a sudden peak of
taxicab passenger demand near the parade position. Previous
inference methods generally consider several obvious random
factors such as weather and holiday, but it is impossible for
them to list all random factors (e.g., electricity outage).

Meanwhile, based on the passenger demand inference result,
various taxicab dispatching methods have been proposed [5],
[6], [7], [8], [9]. These works generally focus on utilizing
statistical models (e.g., hidden Markov chain) and routing
methods (e.g., Dijkstra algorithm) to guide taxicabs to the
locations with the maximum probability of potential passenger
appearance through the shortest routes. However, all of these

methods push taxicabs to cruise among locations where pas-
sengers are likely to appear, but are not directly applicable for
electric taxicabs because they cannot optimize the charging of
the taxicabs, which requires a relatively longer time. Some
previous studies [10], [11], [12] have verified that electric
taxicabs usually need to charge 2 to 3 times a day, and each
charge lasts for 0.5 to 2.5 hours. Such a long bulk of idle
charging time will cause the electric taxicabs to miss many
potential passengers [13].

To overcome the drawbacks, we propose CD-Guide, an
electric taxicab Charging and Dispatching approach, which
utilizes customized selection and training of suitable historical
passenger demands, and Reinforcement Learning (RL) to
Guide an electric taxicab. By saying suitable historical data,
we mean the data that are under the influence of random
factors (e.g., weather, holiday) similar as current time. First,
we analyzed a long-term metropolitan-scale taxicab mobility
dataset that records the trajectories and passenger pick-up and
drop-off activities of 15,610 taxicabs. We found that not all
historical data are suitable for the passenger demand inference
model, and the histogram of passengers’ origin buildings
(i.e., where the passengers come from) is a good indicator
for identifying suitable historical data. Also, since passenger
demand has different degrees of variance in different regions,
the regions have different levels of maximum predicability of
taxicab passenger demand (i.e., the maximum accuracy that a
historical data training based inference method can possibly
achieve), and the maximum predicability metric is a good
indicator of the accuracy of the inference result.

The observations serve as the foundation for the design of
CD-Guide. Specifically, for each passenger in the historical
taxicab passenger demand data of a region, we first use the
passenger’s nearest building to identify the passenger (called
the passenger’s building tag). Then, we use the histogram of
passengers’ building tags to extract suitable historical training
data in current time slot among different days, and then
determine a linear regression based model to infer the demand
value in the next time slot. Also, from the extracted suitable
historical training data, we collect the distribution of possible
trip lengths of the passengers in the next time slot to determine
whether the taxicab’s current SoC is able to serve future trips
in the region. Subsequently, we utilize the entropy of previous
passenger demand values, which is a metric for measuring the
dissimilarity of the demand values, in each region to determine
the maximum predictability of the region’s future passenger



demand value. Finally, for each taxicab that needs guidance
on dispatching and charging, we first determine a candidate
set of regions that the taxicab can reach with its current SoC,
then we develop a RL based method for taxicab dispatching
and charging to minimize the number of missed potential
passengers caused by charging, maximize the probability of
picking up a passenger, and meanwhile avoid the taxicab’s
SoC from exhaustion in the rest time of a day. In summary,
our contributions include:

(1) We comprehensively study a metropolitan-scale taxicab
dataset for insights on passenger demand, which serve as the
foundation for the design of CD-Guide.

(2) We propose CD-Guide, an electric taxicab dispatching and
charging approach. It first utilizes customized selection and
training of suitable historical passenger demands to infer
taxicab passenger demand in the next time slot for each region.
Then, we develop a RL based method to optimize taxicab
dispatching and charging.

(3) We have conducted extensive trace-driven experiments on
the SUMO urban mobility simulator to show the effectiveness
of CD-Guide in increasing the number of served passengers
and avoiding the SoC of all taxicabs from exhaustion.

In our knowledge, CD-Guide is the first taxicab dispatching
and charging method that maximizes the taxicab’s probability
of picking up a passenger, minimizes the number of missed po-
tential passengers caused by charging, and meanwhile avoids
the taxicab’s SoC from exhaustion. The remainder of the paper
is organized as follows. Section II presents literature review.
Section III presents our metropolitan dataset measurement
results. Section IV presents the detailed design of CD-Guide.
Section V presents performance evaluation results. Section VI
concludes the paper with remarks on our future work.

II. RELATED WORK

Taxicab Passenger Demand Inference. Multiple urban pas-
senger demand inference methods have been proposed. Fan
et al. [3] proposed to decompose passenger demand into
several patterns, and use the patterns to infer the number of
population at specific times in each region. Shimosaka et al.
[4] proposed to utilize a bilinear Poisson regression model
to predict passenger demand in a metropolitan scale. Zhang
et al. [1] developed a customized online training model with
both historical and real-time GPS position data of taxicabs to
infer taxicab passenger demand. Zhang et al. [2] proposed a
residual Convolutional Neural Network (CNN) based model
to learn the influence of several random factors (e.g., weather,
period and trend of passenger demand), and achieved a higher
inference accuracy than previous methods. However, these
methods have insufficient accuracy because they fail to catch
the influence of all random factors.

Taxicab Dispatching. Multiple taxicab dispatching works
have been proposed. Yuan et al. [9] introduced a method
that schedules the pick-up locations with the shortest routes
for taxi drivers and the waiting locations for passengers to
reduce the cruising time. Zheng et al. [7] modeled the driving
patterns (e.g., driving path, parking position and time) of

vacant taxicabs with a non-homogeneous Poisson process to
find the optimal waiting positions for passengers. Zhang et
al. [6] proposed a method to estimate the revenue of each
route, and guide the taxicab to the route with the maxi-
mum estimated revenue. Zhang et al. [5] proposed pCruise,
in which each taxicab collects the passenger requests from
nearby taxicabs and accordingly cruises on the routes with
the maximum probability of finding a passenger. Xie et al.
[8] further proposed PrivateHunt, which utilizes a Markov
Decision Process to model the appearance of passengers and
dispatches taxicabs. However, these methods push the taxicabs
to cruise among the locations where passengers are likely to
appear, but are not directly applicable for electric taxicabs
because they cannot output the optimal decision on where to
go and whether to get charged, which minimizes the number
of missed passengers for the taxicabs.

III. METROPOLITAN-SCALE DATASET MEASUREMENT
A. Dataset Description and Definitions

In this analysis, we use the data recorded from Jan 1, 2015
to Dec 31, 2015 for measurement, which include:

(1) Taxicab Dataset. This dataset records the status (e.g.,
timestamp, GPS position, velocity, occupancy) of 15,610 taxi-
cabs. 6,510 of them are electric taxicabs.

(2) Charging Station Dataset. It is also collected by the
Shenzhen Transport Committee, which records the information
(e.g., GPS position, number of chargers) of 81 existing plug-in
charging stations in Shenzhen.

(3) Road Map. The road map of Shenzhen is obtained from
OpenStreetMap [14]. We use a bounding box with a south-
west coordinate (lat = 22.4450,lon = 113.7130), and a
north-east coordinate (lat = 22.8844,lon = 114.5270) to
crop the road map data.

We represent the road network of Shenzhen with a directed
graph, in which vertices represent landmarks (i.e., intersections
or turning points), and edges represent road segments [15],
[16], [17]. We introduce the following definition:

Definition 1: Region. The road network is partitioned into a
set of N¢ = 496 regions G = {go, 91, - -, gnc_1 } according
to administrative region planning of Shenzhen.

We partition the timeline of a day into 48 30-minute-long
time slots. Then, combining the taxicabs’ movement records
with the changes of their occupancy status, we extracted pick-
up position and time (i.e., where and when occupancy status
changes from “0” to “1”) of each passenger and mapped it
to the road network, and calculated the number of passenger
pick-ups (i.e., passenger demand) in each region per time slot.

B. Dataset Analysis

1) Suitability of Historical Data for Passenger Demand
Inference: Although people’s life routines repeat in daily
manner, taxicab passenger demand in a time slot (e.g., 08:00-
08:30) may vary in different days due to random factors
(e.g., weather, ceremony). We notice that the influence of
random factors has been reflected in historical passenger
demands. Considering that the distribution of passengers can



\ D‘* T 10 CJActual
_J 05 H
\\ ‘ ‘ ag; 0 HH | Hﬂﬂmr—n—n—]
S 8"
) L Qg
e 5
XS 3.0
> £
j ' Zs5
)\
= CriosborvoorNovhon®
§ > Building ID
. . . o Fig. 2. Comparison of histograms of
Fig. 1. A region with 18 buildings. & p &

passengers’ building tags.

be represented with the histogram of the buildings where the
passengers come from (called the passengers’ building tag),
we believe that the histogram of passengers’ building tags
can be an effective metric for extracting suitable historical
data. Then, we can utilize the suitable historical data to train
a passenger demand inference model to infer future passenger
demand. By suitable historical data, we mean the previous
data in the same time slot (e.g., 13:00-13:30), and under the
influence of similar random factors as today. We randomly
selected a region with 18 major buildings, which is as shown
in Figure 1, and conducted an experiment on inferring the
region’s passenger demand in different time slots of Mar 5,
2015. The general procedure is: (1) at current time slot of
today, we select historical passenger demand data at the same
time slot from previous 365 days before Mar 5, 2015 that is
under the influence of similar random factors as current time;
(2) we utilize the selected suitable historical demand data in
the next time slot (i.e., 13:30-14:00) as the predicted demand
in the next time slot of today; (3) we repeat this prediction of
passenger demand for each time slot throughout today.

For each passenger, we use the building nearest to (in
Euclidean distance) his/her pick-up position as his/her building
tag. Then we decompose the passenger demand in each time
slot into a histogram of building tags, where each column
represents a building tag and the corresponding number of
passengers. The “Actual” in Figure 2 illustrates an example
histogram of region g;’s actual passenger building tags in the
time slot 13:00-13:30. Note that each histogram in Figure 2
is generated from the demand data in the time slot 13:00-
13:30 of a certain day. We use a vector h{ to represent this
histogram (called building tag histogram vector), and a vector
h? to represent a histogram of g;’s passenger building tags on
4" day. For simplicity, we use h® and h’ for explanation, and
we do not show the subscript ¢ unless needed in the following
sections. We use the chi-square distance [18] between h’ and
h° as their similarity. Specifically, given the building IDs in
g; are k = 1,2,..., NP, where N is the total number of
buildings in g;. Thus, h? and h¢ are two N? x 1 vectors. The

chi-square distance between h’ and h¢ is defined as
NB .

3= }Z (hy, — h§)?

; , .

(D

where hi represents the k' element in vector h7. The smaller
x? a previous demand has, the more similar it is to current sta-
tus. For example, suppose h€ is composed of 404 passengers

from building1, 262 passengers from building2, and 89 passen-
gers from building3. Then h€ has the following representation:
{buildingl (404), building? (262), building3 (89)}. Suppose
h' has the following representation: {buildingl (201), build-
ing2 (500), building3 (90)}. The similarity between h¢ and h!

.2 1 (404—201)* (262—500)? (89—-90)%\ _
is X1 = 3 X (“Joi7201~ T “2627500" T sote0 ) = 71-23.
Suppose h? has the following representation: {buildingl (401),

building? (300), building3 (100)}. The similarity between h°

2. 2 1 (404—401)% *| (262—300)2 |, (89—100)%\ _
and h X =3x ( 1047401 Jr_ 2621300 + “So7100 ) =
1.61. Since x3 < x2, h? is more similar to h¢.
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ample, the “Histogram” in Fig. 3. Distribution of SMAPEs.
Figure 2 illustrates the histogram of passenger building tags
of a historical demand in the time slot 13:00-13:30 that has
the most similar histogram to “Actual”. Specifically, in the
experiment, when inferring each time slot’s passenger demand
on Mar 5, 2015, we calculate and rank the X? of all the
previous demand data to select the most suitable historical
data that has the minimum X§~ Then, based on the passenger
demand of current time slot denoted as the n*”* time slot (e.g.,
13:00-13:30), we use the demand value of “Histogram” in the
next time slot denoted as the (n + 1)" time slot (e.g., 13:30-
14:00) as the predicted demand value in the (n+1)*" time slot.
Using this way, we predict the passenger demand of each time
slot throughout the day. In addition, we also use a randomly
selected historical passenger demand in the (n+1)" time slot
as the predicted demand value (denoted by “Random”), which
serves as the baseline.

We calculated the symmetric Mean Absolute Percent-
age Error of the inference results (ie., sSMAPE =
o et emand s Gl 1), 120], where N, s the
number of time slots in a day, and 1 is to avoid division
by zero as in [19], [20]) over all time slots for each re-
gion. The results are illustrated in Figure 3. We can see
that the SMAPEs of the three methods generally follow:
“Histogram”<“Random”<“Total”. This result confirms that
the histogram of passengers’ building tags is an effective
metric for differentiating the suitability of historical data. The
experiment also confirms that the total number of passengers
is not a reliable metric for selecting the most suitable historical
data for training the inference model. In Section IV-B, we will
elaborate how CD-Guide extracts suitable historical training
data and infer the passenger demand in the next time slot.

2) Variance of Taxicab Passenger Demand: Several pre-
vious works [20], [21] have confirmed that taxicab passen-
ger demand in a region has a certain degree of regularity
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(e.g., weekly patterns), but also a certain degree of variance
(i.e., fluctuation of demand values due to the influence of
random factors), which constrains the maximum predictabil-
ity of passenger demand in the region (i.e., the maximum
accuracy that an inference algorithm can possibly achieve).
However, these methods do not explain how the maximum
predictability of passenger demand inference can be taken into
account in the taxicab charging optimization. Entropy of a
time series is effective in measuring the degree of variance
(i.e., fluctuation of demand values due to the influence of
random factors) of the time series. Generally, the more various
the time series is, the larger entropy it will result in, and
the less predictable it is. A region g;’s all historical taxicab
passenger demands (i.e., passenger demand in each time slot
from day 1 to today) can be represented as a time series:
D.i = {Di,...,D,,...,Dy,}, where each element D, is
an observed historical passenger demand in a time slot, and
N 4 is the total number of collected demand values of g; since
the beginning of observation. Note that D, can be obtained
by summing up all passengers appeared in g; during the a*®
time slot. Suppose the time series Dy = {1,2,2}, then its
subsequences are: {1}, {2}, {2} {1,2}, {2,2}. Its unique
subsequences (s,) are: {1}, {2} {1,2}, {2,2}. Following the
definition of human mobility randomness in [21] and [20], the
entropy of Dy is defined as:

E=- Z Pr(sa) IOgQ(PI‘(SQ)),

8a CDan
where Pr(s,) is the probability that a unique subsequence (e.g.,

{1} is a unique subsequence of {1,2,2}) s, appears in Dyj.
For example, the probabilities that each unique subsequence of
D = {1,2,2} appears in Dy are: Pr({1}) = 1, Pr({2}) = 2,
Pr({1,2}) = 1 and Pr({2,2}) = 1. The entropy of Dy is
calculated as 1 log, 5+ 2 log, 2 + £ log, 5+ £ log, 5 = 1.92.
The fewer unique subsequences Dy has (i.e., lower similarity
of historical passenger demand values), the smaller E will be.

We calculated the entropy of passenger demand time series
(including all observed passenger demand values from Jan 1 to
Dec 31, 2015) for each region by Equation (2). Figure 4 shows
the CDF of the results. We can see that 80% of the regions
have a passenger demand entropy higher than 2.03 (red dashed
line), which means that the passenger demand in these regions
has a higher degree of variance than Futian CBD. We need to
use the entropy of passenger demand to measure the different
degrees of variance for the regions.

2

Recall that in Section III-B1, we have obtained the SMAPEs
of the passenger demand inference result of “Similar” through-
out all time slots of Mar 5, 2015 for all regions. To analyze
the relation between the inference accuracy and the passenger
demand entropy of the regions, we further drew a density
scatter heat plot between the entropies of passenger demand
and the sMAPEs of all regions, as shown in Figure 5. Each
point represents a region. The warmer color a point has, the
more concentrated it is with the other points, which have
similar entropies of passenger demand and sSMAPEs. We also
drew a line across the points. We can see that most points are
scattered around the line, which means that for the regions with
a larger entropy, their inference error will be higher (i.e., lower
inference accuracy) and vice versa. This result indicates that
the maximum predicability of passenger demand in a region
is dependent on the randomness of the region’s historical
passenger demand time series. The maximum predicability
constrains the maximum accuracy of the region’s passenger
demand inference result. In Section IV-B3 and Section IV-C,
we will introduce how CD-Guide determines the maximum
predictability of the inference result and considers it in taxicab
dispatching and charging optimization.

IV. SYSTEM DESIGN OF CD-GUIDE
A. Framework of CD-Guide

CD-Guide consists of the following three stages:
1. Map gridding & information derivation. First, the entire
city area is partitioned into a Gridded Roadmap. Also, the
taxicab dataset is cleaned up (e.g., filtering out positions out
of the actual range of Shenzhen, redundant positions). Then,
based on the cleaned data, we derive the Passenger Demand
Records of taxicabs in each region.
2. Taxicab passenger demand inference (Section IV-B).
Based on the output Passenger Demand Records from the first
stage, we extract Suitable Historical Data that are under the
influence of random factors similar as current time for each
region. Then, we apply Inference Model of Taxicab Passenger
Demand to infer demand value in the next time slot. Finally,
we calculate the Maximum Predictability of Taxicab Passenger
Demand for more accurate inference of passenger demand.
3. Optimization of taxicab dispatching and charging (Sec-
tion IV-C). For each taxicab, we first use its SoC and taxicab
passenger demands in each region for the Determination of
Taxicab Service Ability for each region. A taxicab’s service
ability in a region is defined as the ratio of passenger trips in a
region after it arrives at the region until the end of the next time
slot that its SoC can support. Then we develop a Reinforcement
Learning based Taxicab Dispatching and Charging method to
decide which region the taxicab should drive to and whether
to get charged in the region.

B. Taxicab Passenger Demand Inference

In the following, we explain how the taxicab passenger
demand in a region g; is inferred. Since the inference process
is achieved per region, we do not show the subscript ¢ for
simplicity. We firstly introduce how CD-Guide utilizes the



distribution of passengers’ building tags to select the historical
passenger demands that are suitable for training the model
for inferring the taxicab passenger demand in the next time
slot. Then, we design an linear regression based model to
infer the taxicab passenger demand in the next time slot.
Finally, we elaborate how CD-Guide calculates the maximum
predictability of passenger demand for more accurate inference
of passenger demand value.

1) Extracting Suitable Historical Data: The analysis result
in Section III-B1 has demonstrated that the historical passen-
ger demand with a total number of passengers approximate to
current passenger demand is not guaranteed to be suitable for
training the inference model. Specifically, given the building
tag histogram vector of region g; in current time slot (i.e.,
n'" time slot) of today (h¢(n)), we first use Equation (1)
to calculate its similarity (i.e., chi-square distance) to the
historical building tag histogram vector of region g; in the
same time slot (h7(n)) of each day in the previous NP
days (e.g., 365 days). Then, we rank the historical passenger
demands in previous N” days by increasing order of their
chi-square distance to h¢(n), and select the top ranked
(e.g., 10%) days’ passenger demands as training data. Finally,
we obtain a sequence of N suitable previous passenger
demands during n'* time slot from the total N” historical
passenger demands: {D7(n)|j = 1,2,..., N}, where D7(n)
represents the taxicab passenger demand in region g; during
nt" time slot on j** day, and N? is the number of days of
the extracted suitable passenger demands. A larger NP and
B will increase the training computation overhead but may
include the influence of more random factors that are similar
as current time in the extracted suitable historical training data.
To find the best values for them, we vary each variable within
a certain range (e.g., [30, 60] for NP and [5%, 15%] for
B). We try different combinations of the N and 3 values,
and choose the combination that achieves the minimum chi-
square distance to h¢(n) as the final values of N? and 3. In
implementation, we determine these parameters offline.

2) Inference Model of Taxicab Passenger Demand: We
want the inference model to utilize the extracted suitable his-
torical data (i.e., { D7 (n)|j = 1,2,..., N}) to infer passenger
demand in the next time slot of today (i.e., D¢(n + 1)). The
analysis results in Section III-B1 have demonstrated that for
the historical passenger demand with a building tag histogram
similar to that of current passenger demand, their trend of
passenger demand in the next time slot will also be similar.
Thus, if the training output in current time slot is close to
current passenger demand (i.e., D(n)), we can use this model
to estimate the demand value in the next time slot (i.e.,
D¢(n 4 1)) with a high accuracy. Therefore, we propose a
taxicab passenger demand inference model based on the linear
regression of the extracted historical demand data.

The general procedures of training the inference model
consists of: (1) we first input {D7(n)|j = 1,2,..., N%} as the
training data to the inference model, and learn the parameters
of the inference model to minimize the error between the
training output and current passenger demand D¢(n). Once the

best parameters are determined, the training of the inference
model is complete. (2) Then we input the suitable historical
datain (n+1)%" time slot (i.e., {D/(n+1)|j = 1,2,..., N4})
to the inference model to infer the passenger demand in
(n + 1)t" time slot of today (i.e., D¢(n -+ 1)).

Considering that D7(n) is actually the sum of passenger
demand contributed by each building k € g;, we use its cor-
responding building tag histogram vector h’(n) to represent
DJ(n). Let H(n) be a N x N¢ matrix with each column
representing the building tag histogram vector of an extracted
suitable historical passenger demand in n'" time slot. That
is, H(n) = [h'(n),h2(n),...,hY"(n)]. Note that NB is the
total number of buildings in g;. Let w be a N x 1 weight
vector of the N¢ days’ extracted suitable passenger demands.
As aresult, a NP x 1 vector H(n)w is the model’s training
output for h(n), which is the building tag histogram vector
on today in n'" time slot (i.e., ground truth). Thus, the key
objective for training the inference model is to find an optimal
w that minimizes the error between h(n) and H (n)w:

w* = argmin(h®(n) — H(n)w) (h°(n) — Hn)w), 3)

where ()’ means matrix transpose, and w* is the optimal
solution, which can be obtained by least-square fitting [22].
Finally, the building tag histogram vector of g; during the
next time slot £ 4 1 is

h°(n+1)=H(n+1)w". )

The inferred total taxicab passenger demand in g; during
the next time slot of today (i.e., D°(n + 1)) is obtained by
summing the elements in h¢(n + 1).

3) Maximum Predictability of Taxicab Passenger Demand.:
The data analysis results in Section III-B2 have illustrated
that the maximum predictability of a region’s future passenger
demand value is dependent on the randomness (entropy) of the
region’s historical passenger demand time series, and measures
how reliable the passenger demand inference result is. One
question is: how to determine the maximum predictability of
the passenger demand for each region and consider it in the
optimization of electric taxicab dispatching and charging? In
this section, we elaborate how the maximum predictability of
the region’s passenger demand value is determined.

We first compute the entropy of historical passenger demand
time series E by Equation (2) for each region offline to
save real-time computation overhead. Suppose the number of
unique taxicab passenger demand values in Dy, is N*. For
example, for Dy = {1,2,2}, D, only has N* = 2 unique
demand values: 1 and 2. That is, N* is the number of possible
values that a future taxicab passenger demand (e.g., D¢(n+1))
can have. Among the N" demand values, only one value is
correct. Suppose the probability that we can accurately infer
the demand value of D¢(n + 1) is P™* (i.e., the maximum
predictability of a future passenger demand value in g;). Thus,
the probability that we will inaccurately infer the demand
value is 1—P™ [20], [21]. According to [20], [21], we assume
the probability of inferring the remaining inaccurate N* — 1
possible demand values follows a uniform distribution. That is,
the probability of inaccurately inferring any one of the other



N*"—1 possible values is 1]\7f) imf, then E can be also calculated

as the entropy resulted from accurate case and inaccurate case:

max max 1 - Pmax 1 - Pmax
E = —P™logy(P™) Ne 1 log, ( Nv 1 )
Nu—1
— _Pmax 10g2 (PmaX) _ (1 _ PmaX) 1Og2 (1 _ PmaX)
+ (1 —P™)logy(N" —1). 5)

Since F is known, and N*“ can be determined from Dy,
thus P™* can be obtained by solving Equation (5). Finally,
the maximum predictability of the passenger demand value
D¢(n + 1) is determined as 1 — P™*, Since we expect to
dispatch the taxicab to the region with a relatively higher
predictability of passenger demand (i.e., higher inference
accuracy, 1—P™ should be as low as possible), we adjust the
passenger demand value D¢(n+1) to be D®(n+1) = Dli(gﬁi)
in later optimization of taxicab dispatching and charging.

4) Determination of Taxicab Service Ability: When dis-
patching a taxicab to pick up its next passenger, we expect
that the taxicab has enough SoC to support the trip of its next
passenger. This is because that the trip length of the passenger
determines the energy consumption of the taxicab. Intuitively,
the trip lengths of civilians in a city are relatively stable during
the same time slot among different days due to life routines.
Therefore, from the suitable historical data of a region g; ex-
tracted from Section IV-B1 (i.e., {D!(n)|j = 1,2,..., N2},
we collect the distribution of possible passenger trip lengths
at specific time (e.g., 13:10) in the next time slot in previous
days, and use it as an estimation of the distribution of
passenger trip lengths in the next time slot of today. We
collect this distribution for each region g;, and calculate the
taxicab’s service ability in g; (i.e., ratio of future passenger
trips that a taxicab’s current SoC can support). Specifically,
suppose current SoC of a taxicab is SoC, and the lower bound
of a taxicab’s SoC is SoCy, (e.g., 20%), which is set to
ensure that the taxicab will have enough remaining SoC to
go to the nearest charging position upon the exhaustion of
its battery. The taxicab’s service ability during specific time
duration within a time slot (e.g., [13:10, 13:20] within time
slot 13:00-13:30) in g; is calculated as:

®;(S0C|[ts, te]) = Pr{SoC — c(If +17) > SoCpints < t¥ < te},

(6)
where c. is the energy consumption rate (i.e., the amount of
SoC consumed by unit length of driving) of the taxicab, [¢
is the driving distance from the taxicab’s current position to
the nearest position in region g;, and [? is the trip length
of a passenger in region g;. Therefore, SoC — c.(I¢ + ')
is the remaining SoC after the taxicab arrives at g;. t¥ is the
appearance time of a passenger in g;, ¢ is the start time of the
time duration, t. is the end time of the time duration. Equation
(6) can be equivalently transformed into the following form:

SoC — SoC\pin —

Ce

el
St < 1P < te),
@)
which means that based on the current SoC of the taxicab
SoC, the taxicab can support passenger trip lengths shorter
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than - during specific time duration [ts,%.].
Recall that we assume the maximum pool of passengers that
the taxicab can possibly pick up in region g; consists of
passengers that will appear in the region within n!” and
(n + 1)*" time slots. That is, the actual pool of passengers
that the taxicab can support with its current SoC during a
specific time duration [t,,t.] (e.g., the taxicab’s charging time
duration) is ®,(SoC|[ts,t.])(DS(n) + D§(n + 1)). From the
estimated distribution of future passenger trip lengths, we can
calculate ®; for each region g; during specific time duration
for a taxicab. Then we extract the regions that have ®; > 0
and define them as the set of candidate regions for dispatching
the given taxicab:

G = {g: € G|®; > 0}, (8)
which means that the taxicab can afford the trip length of
at least one passenger in these regions. Recall that the taxi-
cab’s total number of potential passengers in each candidate

region of G is weighted by the taxicab’s service ability (i.e.,
D, (SoC|[ts, te]) (D (n) + DE(n + 1))).

C. Reinforcement Learning based Taxicab Dispatching and
Charging

We use the RL model to generate the action. Specifically, the
RL mode produces policy 7 : s, +> ay, that is, given state s,
it outputs a,, as the optimal action that maximize the reward.
We define reward as the number of potential passengers that
the taxicab can pick up. We utilize the taxicab’s SoC and the
predicted passenger demands of the candidate regions (&) in
the n'" and (n+1)*" time slots (i.e., { D§(n)+ D (n+1)|g; €
G}) to describe the state s,,. That is, s, = (SoC, {Df(n) +
D¢(n 4+ 1)|g; € G}). As shown in Figure 6, the state is the
input to the reinforcement learning model. The output of the
model is an action (a,), i.e., the decision for dispatching and
charging in the n'" time slot including: 1) which region the
taxicab should drive to (denoted by z; € {0,1}); 2) whether
the taxicab should get charged in the region (denoted by y; €
{0,1}). That is, a, = (x;,y;). Specifically, if x; = 1, the
taxicab is dispatched to g;; if x; = 0, the taxicab will not
drive to g;. If y; = 1, the taxicab will receive a recharge in g;
when it arrives at g;; if y; = 0, the taxicab will not receive a
recharge in g;.

We use the number of potential passengers that the taxicab
can pick up by taking an action as the reward for the
Reinforcement Learning (RL) model. If z; = 1 and y; = 1
(i.e., the taxicab will drive to g; and receive a recharge in g;),



the taxicab will spend 7¢ on driving to g;, and 7§ on receiving
a full recharge in g; based on its current SoC. Thus, starting
from current time tg, the time duration that the taxicab can
pick up passengers in the n'" and (n + 1) time slots is
[to+ 78 +7F,to+ 2T, where T is the duration of a time slot.
[to + 78 4+ 7£,to + 2T is defined as the time duration from
the taxicab’s completion of charging in region g; until the end
of the n** and (n + 1) time slots. Similarly, if x; = 1
but y; = 0 (i.e., the taxicab will drive to g; but will not
receive a recharge in g;), the time duration that the taxicab
can pick up passengers in the n** and (n + 1) time slots is
[to + 78, to + 2T). The taxicab’s reward function resulted by
z; and y; can be represented as:
T(Sm Qn, Sn+1) = (‘I’z‘(lHto + Tid + TicvtO + 2T])yi
+  ©;(SoC|[to + 7, to + 2T7)(1
— y)(Di(n) + Di(n+ 1)z,  (9)

where ®;(1|[to + 78 + 7F,to + 2T7)) is the taxicab’s service
ability in g; after charging. The reason SoC = 1 is that the
taxicab will firstly fully recharge its battery and then drive to
pick up a passenger. ®;(SoC|[to+T7¢, to+2T)) is the taxicab’s
service ability in g; without charging. Both ®;(1|[to + 7¢ +
7¢,to+2T)) and ®;(SoC|[to+7¢, to+2T]) are obtained from
historical passenger demands.

We use the Deep Neural Network (DNN) to obtain the
optimal policy as in [23]. The optimal policy 7* is defined as
one map 7* : s, — a, that maximizes the reward received by
taking the correspoinding action a,, given state s,,. To discover
the optimal dispatching and charging policy that maximizes the
reward under various states, we utilize the long-term historical
passenger demands (e.g., passenger demands in previous 365
days) for offline training of the reinforcement learning model.
Once the training is complete, the taxicab can utilize the
optimal policy to generate the dispatching and charging action
in real time. During the training process, the inputs are the
state, the different actions the taxicab takes (i.e., driving to
each region and choose to get recharged or not) and the
reward calculated by Equation (9). Specifically, we suppose
that the taxicab’s initial state starts from a randomly selected
region with SoC' = 1. Then, we simulate the movement of
the taxicab from one region to another region. That is, the
taxicab transfers from one state to another state by taking
different actions. Finally, we utilize the historical passenger
demand value information at each time when the taxicab takes
an action to calculate the reward. The RL model calculates
the Q value of a series of successive actions as the sum of
the rewards resulted from the actions. Reinforcement learning
finds a policy that is optimal in the sense that it maximizes
the expected value of the total reward over all the series of
successive actions.

V. PERFORMANCE EVALUATION

A. Comparison Methods

To evaluate CD-Guide’s performance, we compare its taxi-
cab passenger demand inference performance with a rep-
resentative method that utilizes Bilinear Poisson regression

model to consider the effects of random factors on passenger
demand values (BilinearPoisson in short) [4], and the method
introduced in Section III-B1 (Similar in short). Specifically,
throughout all the time slots in a day, Similar utilizes the
historical demand value, of which histogram of passenger
building tags has the smallest X? to that of current passenger
demand value, as the predicted passenger demand in the
next time slot. BilinearPoisson develops a bilinear Poisson
regression model, which takes all the historical demands as
input training data without selection. It uses random factors
including day of week, holidays and weather as inputs to the
model and learn their effects on passenger demand.

We also compare the performance of CD-Guide in serving
passenger requests with a representative taxicab dispatching
method (PrivateHunt in short) [8], and a baseline method that
randomly dispatches the taxicab to a nearby region (Baseline
in short). PrivateHunt utilizes the future passenger demand
inferred from historical passenger demands to determine the
cruising policy for each taxicab, in order to maximize the
taxicab’s likelihood of picking up passengers. For fairness,
we use the passenger demand inference result output by CD-
Guide. Then, it utilizes a Markov Decision Process to model
the appearance of passengers and uses the probability of
passenger appearance to calculate the probability of picking up
a passenger in each region. Finally, it recommends the region
that has the maximum probability of picking up a passenger to
the taxicab. The distribution of chargers follows the existing
charging stations in Shenzhen. Since PrivateHunt and Baseline
do not have specific methods to optimize the charging of
taxicabs, we set that the taxicabs in these two methods will
drive to the nearest charger for charging whenever their SoC
is below a threshold (20% in experiment).

B. Experiment Settings

We suppose that every electric taxicab starts driving with
full energy in battery at the beginning of a day. The battery
capacities of the taxicabs follow a uniform distribution from
65 kWh to 85 kWh, which is the common battery capacity
of electric taxicabs in Shenzhen [11]. The charging rate of
a charging infrastructure is set to 150 kW [24]. The energy
consumption rate of a taxicab is a 0.425 kWh/km [10], [11].
The SoC lower bound SoC;, is set to 20%. We use the
historical data from July, 2014 to June, 2015 as the training
data for CD-Guide, Similar and BilinearPoisson. The random
factors such as day of week and holidays are obtained from
Shenzhen’s calendar of 2015, and the weather data is obtained
from the China Meteorological Data Service Center [25]. All
16 weather types (e.g., Sunny, Rainy) are denoted with one hot
coding (i.e., if a day is sunny, its code is 1, or O otherwise).
We aim to infer the passenger demand in each time slot of
July 15, 2015 to compare the accuracy of different passenger
demand inference methods. The values of parameters related
to training (i.e., NP, B) are NP = 365 and 8 = 10%.
Based on the deployment of existing charging stations in
Shenzhen, we use SUMO [26] to simulate the operation of
1,000 EVs on Shenzhen’s road network for 24 hours. We
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converted OpenStreetMap road network of Shenzhen to a
SUMO road network file. In SUMO, we let taxicabs drive
by the dispatching strategy of each comparison method.

The metrics we measured are:
e Passenger demand inference sMAPE. For each region, we
measure the SMAPE over all time slots throughout a day for
each region, and collect the CDF of the SMAPEs of all the
regions. We also collect the CDF of the Absolute Percentage
Error (APE) [19], [20] (i, APE = [t demnd_ st band
of the inference result in each time slot of all the regions. The
purpose of this metric is to compare the inference accuracy of
different passenger demand inference methods.
o The number of served passengers. We measure the number of
passengers served by all taxicabs in all time slots throughout
a day. We also measure the number of passengers served by
each taxicab, and collect the CDF of all the served passengers.
The purpose of this metric is to compare the performance of
different taxicab dispatching methods in serving passengers.

Fig. 7. Distribution of passenger de-
mand inference SMAPEs.

C. Experimental Results

1) Passenger demand inference sMAPE: Figure 7 shows
the distribution of the SMAPEs of taxicab passenger demand
inference results in all regions. Figure 8 shows the distribution
of the APEs of the inference results in each time slot of
all regions. We can see that for most regions (>90%), the
SMAPEs follow: CD-Guide<BilinearPoisson<Similar. While
for the other regions (<10%), the sMAPEs follow: CD-
Guide~BilinearPoisson<Similar. The APEs of the inference
results generally follow CD-Guide<BilinearPoisson<Similar.

Similar results in the highest average sMAPE over all
regions. This is because that it uses only one suitable historical
passenger demand value, of which histogram of passenger
building tags has the smallest x? to that of current passenger
demand value, as the demand value in the next time slot.
Although the historical data is a good indicator of the changing
trend of passenger demand in the next time slot, simply
using a historical passenger demand value as a future demand
value will inevitably cause a high inference error, because one
suitable historical data sometimes cannot catch the influence
of all random factors.

In comparison, BilinearPoisson has a much lower sMAPE
in all regions. This is because that BilinearPoisson regresses
the change of passenger demand value by time via the
bilinear Poisson regression model. After training the time-
variant Poisson parameter with large-scale historical data, it
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Fig. 9. The number of served passen-
gers of all taxicabs.

Fig. 10. Distribution of the numbers
of taxicabs’ served passengers.

has taken into account the long-term temporal change pattern
of taxicab passengers. In addition, after adding the quantified
effect of random factors to the bilinear Poisson regression
model, BilinearPoisson can better adjust its inference result
against unexpected cases (e.g., day of the week, weather) that
are not reflected in historical data. However, its inference
accuracy is constrained by the maximum predictability of
future passenger demand in some regions. This is why the
SMAPEs of BilinearPoisson in around 75% of the regions are
similar or lower than those in CD-Guide.

Compared with BilinearPoisson, CD-Guide achieves a
lower sSMAPE in around 75% of the regions, a similar sMAPE
in around 20% of the regions, and a slightly higher SMAPE in
the rest 5% of the regions. This is because that in CD-Guide,
the suitable historical data extraction process has ensured
that the training data for inference have been limited to
previous days that have similar histograms of passenger tags,
which means that they are under the influence of similar
random factors. For most regions (i.e., 95%) with a relatively
higher passenger demand predictability, the extracted suitable
historical data has covered sufficient random factors that may
influence the region’s future passenger demand. What’s more,
CD-Guide utilizes the linear regression to learn the weights
of the random factors in generating the inference result.
As a result, the inference accuracies of passenger demands
in the 95% regions are sufficiently high. For the rest 5%
regions, which have relatively lower predictability, their future
passenger demand does not have much commonness with their
historical demands (i.e., unpredictable), catching the overall
random factors that affect the historical demands does not
help improve the predictability of passenger demand (i.e.,
unpredictable). As a result, BilinearPoisson achieves a lower
SMAPE due to its learned influence of several random factors.
This experiment result demonstrates that CD-Guide’s passen-
ger demand inference method is effective in approximating
the actual passenger demand with a higher accuracy, and
its effectiveness differs in the regions due to the different
predictability of passenger demand in the regions.

2) The Number of Served Passengers: Figure 9 shows the
number of passengers served by all the taxicabs and the actual
total number of passengers in each hour of a day under
different taxicab dispatching methods. Figure 10 shows the
CDF of the numbers of served passengers of all the taxicabs
under different methods. We can see that in both figures, the
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results follow: Total>CD-Guide>PrivateHunt>Baseline.

In Figure 9, Baseline always achieves the minimum total
number of served passengers during all hours in a day. This is
because that it simply dispatches the taxicab to a nearby region
without considering the passenger demand in the region. So the
taxicab cannot efficiently discover passengers when driving.
From Figure 10, we can see that almost all taxicabs cannot
pick up more than 50 passengers in a day.

In comparison, the taxicabs of PrivateHunt picked up much
more passengers than those in Baseline. This is primarily
because that PrivateHunt employs a Markov Decision Process
to determine the probability of picking up a passenger and
the possible duration of cruising time without a passenger
onboard. The dispatched taxicab is able to quickly discover
a passenger by following the recommended route.

The taxicabs of CD-Guide achieve the highest and the
second highest total number of served passengers during all
hours in a day, respectively. We can see that the curve of CD-
Guide generally changes accordingly with the change of the
total number of passengers. This observation verifies that the
service of the taxicabs of CD-Guide was not greatly effected
by their charging time. This is because that CD-Guide takes
into account the effect of charging time on the number of
potential passengers, and meanwhile ensure that the taxicab
has sufficient SoC throughout a day.

VI. CONCLUSION

Accurate inference of future passenger demand and avoid-
ance of missing too many passengers caused by battery charg-
ing is essential for efficient dispatching of electric taxicabs.
Our proposed CD-Guide is the first electric taxicab Charging
and Dispatching approach that Guides electric taxicabs to
minimize their number of missed passengers due to charg-
ing. Our analytical results on a metropolitan-scale electric
taxicab passenger demand dataset provide insights for the
design of CD-Guide. We utilize the histogram of passengers’
building tags to extract suitable historical passenger demands
for training a linear regression based passenger demand in-
ference model, and adjust the inference result considering the
maximum predictability of taxicab passenger demand in each
region. We design a optimization problem based model that
guides a taxicab to receive charging with minimized number
of missed passengers, maximized probability of picking up
a passenger and sufficient SoC during the rest time slots of
a day. We conducted trace-driven experiments on SUMO to
verify the performance of CD-Guide. Compared with previous
methods, CD-Guide increases the number of served passengers
by 100% on average, and maintains the average SoC of all
taxicabs above 80% during all time slots.
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