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Abstract—With the application of Wireless Power Transfer
(WPT) techniques for Electric Vehicles (EVs), public transporta-
tion EVs are expected to be continuously operable without
recharging downtime. A road segment equipped with an in-
motion wireless charger is called a charger lane. To maximize the
service efficiency of deployed in-motion wireless chargers without
suffering from traffic congestion, we must properly manage the
traffic of the EVs and coordinate their arrivals at the charger
lanes to avoid the generation of traffic congestion at the charger
lanes and on the road segments to them. In this paper, we propose
WPT-Opt, a game theoretic approach for Optimizing in-motion
wireless charging service efficiency, minimizing EVs’ time spent
on the way to the charger, and avoiding traffic congestion at
the charger lanes, to fulfill this task. We studied a metropolitan-
scale dataset of public transportation EVs, and observed the
EVs’ spatial and temporal preference in selecting chargers,
competition for chargers during busy charging times, and the
relationship between vehicle density and driving velocity on a
road segment. Then, we formulate a non-cooperative Stackelberg
game between all the EVs and a central controller, in which each
EV aims at minimizing its charging time cost to its selected target
charger, while the central controller tries to maximally avoid
the generation of congestion on the in-motion wireless chargers
and the road segments to them in the near future. Our trace-
driven experiments on SUMO demonstrate that WPT-Opt can
maximally reduce the average charging time cost of the EVs by
approximately 200% during different hours of a day.

I. INTRODUCTION

Due to foreseen depletion of fossil fuels, many countries
are actively adopting Electric Vehicles (EVs) for public transit
systems [1]. The public service EVs (e.g., taxicabs, buses) are
expected to keep driving without a long period of recharge
downtime, although they only have limited driving range (e.g.,
200 km) due to battery capacity. Wireless Power Transfer
(WPT) techniques for in-motion EV charging [2], [3] and the
deployment of in-motion wireless chargers (wireless chargers
in short) [4] provide a solution to the above expectation.
A road segment equipped with a wireless charger is called
a charger lane. However, an EV may suffer from traffic
congestion (i.e., long driving time) on the way to its selected
target charger or long non-charging time at the charger without
recharge (non-charging time in short). EV charging scheduling
system should ensure the chargers’ service efficiency (i.e., as
many charged EVs as possible per unit time and each passed
EV can be fully charged) [5].

Many scheduling strategies of EVs for improving the service
efficiency of plug-in charging stations have been proposed
[5]–[12]. Generally, they recommend target charging stations,
which result in the minimum charging time cost (i.e., charger
seeking time before reaching their target charging station plus

non-charging (waiting) time at the charging station), to EVs
based on current status of charging stations (e.g., location,
number of available chargers). However, their charging time
cost is estimated based on current traffic status. If the availabil-
ity (i.e., number of available chargers) of the target charging
station or the traffic on the road segments to the station
changes, the EVs may suffer from traffic congestion and a
long charging time cost. What’s more, these methods are not
applicable for in-motion wireless chargers due to different
charging approaches. For example, before busy charging times,
the chargers may be non-congested. However, if legions of
EVs drive to the currently “optimal recommended wireless
charger lane” (i.e., the wireless charger lane with the shortest
estimated charging time cost), they may crowd into the wire-
less charger lane or the road segments connecting the chargers
simultaneously. Such competition for the wireless charger lane
may result in traffic congestion. Since congestion will greatly
decrease EVs’ passing velocity at the wireless charger lane
[2], it will result in less EVs passing through the charger lane
during a unit time (i.e., degraded charger service efficiency).

However, the solution is non-trivial. Most charger de-
ployment methods (including plug-in and in-motion wireless
chargers) [4], [13]–[15] advocate deploying plug-in chargers
to the positions with high volume of EV traffic to offer easy
access for EVs. However, the chargers deployed at these
positions may frequently suffer from traffic congestion. The
road congestion on a wireless charger lane is measured by its
vehicle density (i.e., number of vehicles per unit length); a
higher vehicle density increases the service efficiency of the
charger lane but generates congestion and decreases vehicle
velocity, and vice versa. Therefore, it is a challenge to maxi-
mize the service efficiency of a network of wireless chargers
while proactively avoiding the generation of congestion at the
chargers and on the road segments to them. Accordingly, we
aim to propose a game theoretic wireless charging service
efficiency optimization strategy to handle this challenge.

After an EV sends out a charging request, it reports its infor-
mation (e.g., velocity, current position, target charger lane) to a
central controller (e.g., hosted in the cloud or fog) periodically
(e.g., every 5 minutes) until it arrives at its target charger lane.
Non-electric vehicles and other EVs without charging request
also periodically report their current driving information to
the central controller for vehicle density estimation of the
road segments. We aim to avoid traffic congestion on the
road segments connecting the positions of the EVs that have
charging request and the EVs’ target wireless chargers. We
call the collection of these road segments road segment set.
The central controller then utilizes each EV’s trajectory (that



connects the origin and its target charger lane) in the next
time slot and determines the parameters (e.g., EV density of
the road segments in road segment set, expected EV driving
velocity) depicting the future service efficiency of the wireless
chargers. This is based on the observation that a vehicle’s
trajectory can soundly illustrate its future mobility [16]–[19].
To maximize the service efficiency of the wireless chargers
while avoiding EV congestion on them and the road segments
to them, the central controller formulates a non-cooperative
Stackelberg game, in which each EV aims at minimizing the
charging time cost to its target charger lane, while the central
controller tries to maximize the service efficiency of all the
wireless chargers. That is, each EV always wants to drive by
its expected fastest velocity, but may neglect the potential risk
of traffic congestion, which conflicts with the the central con-
troller, which wants to maximize the service efficiency of the
wireless chargers and vehicle flow rate (i.e., average number of
vehicles per unit time) of the road segments to them. After the
Stackelberg equilibrium is reached, when the EVs follow their
optimal velocities (i.e., fastest velocity without causing traffic
congestion), the service efficiency of the wireless chargers
and the vehicle flow rate of the road segments to them are
maximized. In summary, our contributions include:
(1) Our analysis on a metropolitan-scale EV mobility dataset

confirms the movement and charging characteristics of EVs,
and lays the foundation for the design of WPT-Opt.

(2) We propose a wireless charging service efficiency opti-
mization strategy that utilizes a non-cooperative Stackel-
berg game between the central controller and all EVs to
minimize each EV’s charging time cost, and meanwhile
maximize the service efficiency of wireless chargers.

(3) We have conducted extensive trace-driven experiments to
show the effectiveness of WPT-Opt in terms of the number
of charged EVs per unit time, the charging time cost of
the EVs, and vehicle density on the wireless chargers.
Compared with previous methods, WPT-Opt can maximally
reduce the average charging time cost of the EVs by
approximately 200% during different hours of a day.
To our knowledge, this paper is the first work for optimizing

the service efficiency of wireless chargers from the perspective
of avoiding EV traffic congestion in the future. The remainder
of the paper is organized as follows. Section II presents liter-
ature review. Section IV presents our dataset analysis results.
Section V presents the detailed design of WPT-Opt. Section VI
presents performance evaluations. Section VII concludes the
paper with remarks on future work.

II. RELATED WORK

EV scheduling methods. Ma et al. [6] proposed to schedule
EVs to under-utilized plug-in charging stations with reduced
charging price to meet the respective charging demand of each
EV and avoid extreme charging load on the power grid. Gan
et al. [7] further predict the peak electricity-using hours of
EVs at charging stations, and reduce the price of recharging
for each EV to avoid extreme charging load. Sundstrom et
al. [12] proposed to minimize the cost of electricity and
overload on the power grid through personalizing a charging
plan (i.e., when and where to charge) for each EV. Kim et

al. [11] proposed to rank EVs’ charging requests by arrival
time and estimated charging delay, and schedule the EVs
to charging stations by their ranks to reduce the EVs’ non-
charging time. Qin et al. [10] and Lu et al. [9] considered the
remaining power of EVs, and the number of available chargers
in charging stations to minimize the EVs’ non-charging time.
Malandrino et al. [8] modeled EVs’ charging behavior (e.g.,
where and when to charge) and availability of charging stations
with game theory to find the optimal charging price of each
charging station that balances the charging load. Tian et al.
[5] proposed to use each EV’s historical recharging events,
real-time trajectories and current traffic state to recommend
the EV a charging station that leads to the minimal charging
time cost. However, these methods are not directly applicable
for wireless chargers because they cannot avoid the generation
of traffic congestion on the recommended charger lane or on
the road segments to the charger lane in the near future, which
may severely degrade the service efficiency of a charger lane.
Vehicle future mobility based routing. Wu et al. [16] found
the spatio-temporal correlation in vehicle mobility and noted
that the future trajectory of a vehicle is correlated with its
past trajectory. In Trajectory-based Data Forwarding Scheme
(TBD) [17], Trajectory-based Statistical Forwarding Scheme
(TSF) [18] and Shared-Trajectory-based Data Forwarding
Scheme (STDFS) [19], trajectory information of vehicles is
collected through access points and used to predict vehicle
mobility for data forwarding. Our work is based on the ob-
servations that trajectories illustrate vehicles’ future mobility,
which can be used to estimate future road vehicle density.

III. BACKGROUND AND MOTIVATION

A. Definitions and Preliminaries

A road network is a directed graph, in which vertices
represent landmarks (i.e., intersections or turning points), and
edges represent road segments connecting the landmarks [20].
We have the following definition for a vehicle trajectory.
Definition 1. Trajectory. Vi’s trajectory consists of the a start
position P s

i , an end position P e
i and a sequence of time-

ordered landmarks,
Φl

i : {P s
i , (p0, t0), . . . , (pj , tj), . . . , (pN l

i−1, tN l
i−1), P e

i },
where pj is a landmark’s GPS position. N l

i is the total number
of landmarks covered by this trajectory.

A vehicle’s movement record is continuous. As in [20], if
a vehicle has stayed at a stop position for a long period of
time (e.g., 10 minutes), we determine that the vehicle has
finished its previous trajectory. Thus, such stop positions cut
the vehicle’s continuous movement into several trajectories.

B. Vehicle Flow Rate and Velocity at Chargers Matters

Vehicle density of a road segment si, (denoted by di) is
defined as the average number of vehicles per mile in the road
segment (veh/mile), and the vehicle flow rate of si (denoted
by ri) is defined as the average number of vehicles driving
through si per unit time [20], [21]. That is, the vehicle flow
rate of si equals to the product of vehicle density and average
vehicle passing velocity on si (denoted by vi): ri = di · vi.
Moreover, the amount of energy transferred to an EV from



a wireless charger lane is dependent on the EV’s passing
velocity [2], [3]. Each wireless charger lane has a specified
EV passing velocity v′i. An EV will be fully charged only
when it drives through the charger lane with a velocity equal
to or lower than v′i. Also, since different EVs have different
battery capacities, their full recharge time for the same charger
lane will be different. To ensure that all the EVs can be fully
charged, we use the maximum battery capacity of the EVs to
determine the v′i of each charger lane. Therefore, we can see
that to maximize the service efficiency of a wireless charger
lane, we need to increase the vehicle flow rate at the charger
lane and the road segments to it as much as possible, and
meanwhile ensure that the EVs will pass the charger lane with
the charger’s specified velocity.

IV. METROPOLITAN-SCALE DATASET MEASUREMENT

A. Dataset Description and Data Processing System

Our datasets are collected from Shenzhen, China (1.1–
12.31, 2015), with a recording period of 30 seconds:
1.Taxicab Dataset. It is collected by the Shenzhen Transport

Committee, which records the status (e.g., timestamp, posi-
tion, velocity, SoC status) of 15,610 taxicabs, among which
6,510 of them are EVs.

2.Dada Car Dataset. It is provided by the Dada Car cor-
poration (a customized transit service similar to UberPool),
which records the status (e.g., timestamp, position, velocity)
of 12,386 electric reserved service vehicles.

3.Road Map. The road map of Shenzhen is obtained from
OpenStreetMap [22]. According to the municipal informa-
tion of Shenzhen [1], we use a bounding box with coor-
dinate (lat = 22.4450, lon = 113.7130) as the south-west
corner, and coordinate (lat = 22.8844, lon = 114.5270)
as the north-east corner, which covers an area of around
2,926km2, to crop the road map data.

4.Charging Station Dataset. It is also collected by the Shen-
zhen Transport Committee, which records the information
(e.g., GPS position, number of chargers) of 81 existing plug-
in charging stations in Shenzhen. The number of chargers
in the charging stations ranges from 4 to 28. The charging
stations are open to all EVs.

B. Dataset Analysis

In the data analysis, we only selected the movement records
of electric taxicabs and Dada cars for data analysis. We directly
use the method introduced in [5] to determine whether an
EV is approaching its target charging station, recharging at
the station or leaving the station. Specifically, if an EV’s
movement record shows that it has stayed at a charging station
for a long period of time (e.g., 10 minutes), we consider that
it was recharging at the station at that time. Therefore, the
charger seeking time before reaching the EV’s target charging
station is defined as the time interval between the time that
the EV decides to have a recharge and the time it enters the
target charging station for a recharge; the non-charging time
of the EV at the target charging station is defined as the time
duration it stays at the charging station but is not receiving
recharge. Although our dataset analysis is applied on plug-
in charging stations, we believe that the collected results are
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Fig. 1: Frequently visited charging
stations of all vehicles.
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Fig. 2: Distribution of daily average
charge counts of all charging stations.

representative under the case of wireless chargers, since the
EVs’ long-term pattern (e.g., frequently driven road segments,
working hours) remains relatively stable.

1) EVs’ Spatial Preference on Chargers: The charge count
of a charging station is defined as the number of EVs that
charged at this charging station. It was indicated that an EV
may have its own spatial preference in selecting charging
stations [5]. In this analysis, we attempt to verify if the
difference in the preference of selecting charging stations is
conspicuous among different EVs, and the charging popularity
(i.e., daily average charge count of EVs) differs significantly
among different charging stations.

We measured the number of charging stations an EV visited
more than 1 time per day in average throughout 2015. Figure
1 shows the results. We can see that 80% of the EVs only
charged at less than 10 charging stations per day in average.
For the rest 20%, the maximum number of visited charging
stations is only around 20. This means that EVs have quite
stable preference in selecting charging stations. If many EVs
charge at the same charging stations, they may cause conges-
tion at these charging stations or the road segments to them.

We further measured the total daily average charge count
of all the charging stations. Figure 2 shows the Cumulative
Density Function (CDF) of the results. We can see that only
20% of the charging stations have a daily average charge
count higher than 1,000. But the highest value can be as
high as around 4,000. The charging station with the highest
value has 28 chargers. This result confirms that the charging
stations have different levels of popularity among the EVs.
The competition of the EVs for popular charging stations must
be avoided to prevent the generation of possible congestion,
which will result in long non-charging time of the EVs.

2) EVs’ Temporal Preference on Chargers: The busy charg-
ing times (i.e., hours with relatively more charge counts) of the
charging stations may also be quite different. To confirm this,
we randomly selected three charging stations and measured
the daily average charge count during each hour of a day
throughout 2015. Figure 3 shows the measured results. We
can see that for Station 0 (16 chargers), its busy charging time
happens between 06:00 and 10:00; for Station 1 (10 chargers),
its busy charging time happens between 08:00 and 20:00; and
for Station 2 (19 chargers), its busy charging time happens
between 10:00 and 14:00.

To explicitly illustrate the difference between the busy
charging times of the charging stations, we further measured
the maximum daily average charge count of each charging
station and its corresponding hour. Figure 4 shows the mea-
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charging stations.
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Fig. 4: Scatter plot of maximum
charge count vs. corresponding time.

sured results with a density scatter heat plot between the
maximum number of charge count of each charging station
and its corresponding time. Each point represents a charging
station. The warmer color a point has, the more concentrated
it is with other points, which have similar metric values. We
can see that most busy charging times happen at around 09:00,
16:00 and 19:00 (i.e., points surrounded by red squares). These
results illustrate that for different charging stations, their busy
charging times are different, and their maximum charge counts
are also quite different. To identify whether such charging
counts will degrade the service of some charging stations, we
further investigated the competition for chargers among EVs.

3) Competition for Chargers Among EVs: Previous meth-
ods schedule EVs based on current status of EV traffic and
current availability of charging stations. If an EV’s velocity is
individually optimized without considering other EVs’ future
mobility, many EVs may crowd into some charging stations or
road segments to them and generate congestion. To illustrate
this problem, we measured the daily average charge count
and the average vehicle charging time cost to each of the 81
charging stations. The results are illustrated in Figure 5 with
a density scatter heat plot. We can see that most charging
stations (i.e., points with the warmest colors) have a relatively
low daily average charge count (i.e., <100), but a relatively
high vehicle charging time cost (i.e., ≈25 minutes). This is
because that they are relatively distant to the areas that the
EVs frequently visit, so the EVs need to drive a long time
to reach them. However, we still see that for a few charging
stations marked by the red square, they are frequently visited
by the EVs (i.e., >1000), but result in long charging time costs
for the EVs (i.e., >15 minutes). This result confirms that EVs
do have competition for certain charging stations.

4) Relation between Vehicle Density and Driving Velocity
on A Road Segment: It has been indicated that vehicles’ actual
driving velocity on a road segment is subject to the vehicle
density of the road segment [23]. However, previous work
has demonstrated that the accurate relation between the actual
vehicle driving velocity and the vehicle density of a road
segment cannot be modeled with a parametric function (e.g.,
linear function) [24]. Support Vector Machine Regression
(SVMR) is effective in learning the nonlinear relation between
several variables [25]. For each road segment, we may use
its historical records of vehicle density and vehicle passing
velocity during a period (e.g., 15 minutes) to train the SVMR
model and use the learned relation function to estimate the
actual vehicle driving velocity given its vehicle density.

We randomly selected three road segments, of which veloc-
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sity and actual driving velocity.

ity limits are 25 km/h, 35 km/h and 15 km/h, and measured
the vehicle density and average vehicle passing velocity with
a period of 15 minutes from July 1 to July 31 in 2015.
These road segments are potentially suitable for deploying
wireless charger lanes according to previous charger lane
deployment works [4] due to their relatively slow vehicle
passing velocities. But such road segments are more prone
to traffic congestion than others if without a proper traffic
control mechanism due to their narrow road width and slow
EV passing velocity. Then, for each road segment, we feed
its measured results to the SVMR model to learn the relation
function between its vehicle density and actual vehicle driving
velocity. The results are illustrated in Figure 6. We can see
that for the three road segments, the actual vehicle driving
velocity generally decreases as the vehicle density increases,
but with different decreasing rates. Also, the SVMR results
fit the historical records with acceptable precision. In Section
V-B2, we will elaborate how we use the estimated actual
vehicle driving velocity to calculate the travel time of a vehicle
trajectory and predict a road segment’s future vehicle density.

V. SYSTEM DESIGN DETAILS

A. System Overview

WPT-Opt consists of two parts: All EVs as the service
follower and a central controller (e.g., hosted in cloud or
fog) as the service provider, which outputs charging service
information to the EVs. The system structure is shown in
Figure 7. Above all, we have the following assumptions:
1.Each EV who has charging request will firstly use previous

methods [5]–[12] to determine its target charger lane.
Meanwhile, it is willing to report and adjust its driving
status (current position, velocity) according to the charging
service information.

2.Non-electric vehicles and EVs without a charging request
are also willing to report their current driving trajectory to
the central controller for vehicle density estimation. This
is reasonable because that these vehicles can receive better
routing benefit from providing such information.
In Section IV-B, we have demonstrated that all EVs have

their respective spatial and temporal preference on selecting
charging stations, and such preferences can cause competition.
To let all EVs reach their target charger lane as fast as
possible, and meanwhile maximize the service efficiency of
wireless chargers without generating congestion, we use the
Stackelberg game [21] between the EVs and the central
controller to determine the expected vehicle density that
maximizes the service efficiency of the wireless chargers and
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the optimal driving velocity for each EV. Specifically, the
EVs report its driving status (current position, velocity) to
the central controller periodically (e.g., every 5 minutes). In
response, the central controller outputs the optimized driving
velocity for each EV periodically. At the start of current time
slot Tc (e.g., 5 minutes), the central controller applies the
future vehicle density prediction (Section V-B) on the road
segment set (i.e., the set of road segments connecting the
positions of the EVs with a charging request and the EVs’
target chargers) for the next time slot Tc+1:
1.Each EV keeps reporting its driving status (current position,

velocity) and target charger lane to the central controller.
2.Based on the information collected from the EV, the central

controller calculates its trajectory travel time in Tc+1 to
know the EV’s possible position in any time during Tc+1.
Then the central controller aggregates the trajectories and
predicts the vehicle density of each road segment in Tc+1.
By the end of current time slot Tc, an EV driving velocity

optimization gaming (Section V-C) is conducted between the
central controller and all the EVs. The gaming process is
executed periodically with a time interval T (e.g., 5 minutes):
1.Based on the predicted average vehicle density over all the

road segments in road segment set in Tc+1, the central
controller determines a set of candidate expected average
vehicle densities over the next time slot for the road segment
set, which are achievable by vehicle velocity adjustment.

2.Based on each expected average density, each EV deter-
mines its actual driving velocity on its current road segment
and reports it to the central controller.

3.The central controller determines the final expected average
density that maximizes the service efficiency of wireless
chargers and the vehicle flow rate of the road segments
connecting the chargers, and notifies all the EVs.

4.Each EV chooses its velocity corresponding to the final
expected average density.
We first explain how the central controller predicts the

vehicle density of road segments (Section V-B), and then
present the non-cooperative Stackelberg gaming (Section V-C).

B. Future Vehicle Density Prediction

To make the gaming process work after each time slot T
(e.g., 5 minutes), we must be able to calculate the future
vehicle density of wireless chargers and the road segments
to them. To this end, we must solve the following problems:
1.How to estimate the travel time to each road segment of an

EV’s future trajectory based on the current vehicle density
of each road segment (i.e., Tc)? (Section V-B1)

2.How to utilize the future trajectories and the travel times
to the road segments of the trajectories of all the EVs to

predict the future vehicle density of each road segment in
the next time slot (i.e., Tc+1)? (Section V-B2)
1) Trajectory Travel Time Calculation: With the current

position and target charger lane periodically reported by each
EV, the central controller uses an existing routing method
(e.g., [5]) to determine the EV’s trajectory in the next time
slot Tc+1, which is a sequence of road segments connecting
the EV’s current position and target charger lane. Note that
other non-electric vehicles and EVs without a charging request
also report their current driving trajectories to the central con-
troller. It then utilizes the combination of all the trajectories
to calculate the travel time of each road segment that will be
passed in Tc+1 by the EV. In our gaming process, we will
determine a vehicle’s actual driving velocity (vi) on a road
segment (si). Then, for each si, the estimated travel time on
si (denoted by t̃i) is t̃i = li/vi, where li is the length of si.

In Section IV-B4, we have shown that the actual vehicle
driving velocity vi of a road segment si is related to its
vehicle density di, and the relation is relatively stable but
non-parametric, which is denoted as vi = fi(di). SVMR
model is effective in estimating the non-parametric function
between two variables [25]. Thus, for each road segment, we
build its SVMR model to learn its relation between vi and
di. Specifically, we input its vehicle density as the predictor
value and the corresponding actual vehicle driving velocity as
the response value to the SVMR model. The output is the
estimated relation function between the vehicle density and
the actual vehicle driving velocity of the road segment. Later,
given an estimated vehicle density of the road segment, we can
use the function to output its actual vehicle driving velocity,
and further estimate the travel time of the road segment.

Several previous works [26], [27] have confirmed that the
travel time of a road segment can be described by normally
distributed and statistically independent random variables with
acceptable precision. Therefore, for an EV, we estimate its
travel time of the trajectory from its current position to si
as the sum of the travel times of the road segments included
in the trajectory, T̃i =

∑Mi

k=1 t̃k, where Mi is the number of
the road segments included in the trajectory. Based on the
historical records of the travel time of road segment sk from
all vehicles, the central controller can calculate the variance of
sk’s travel time σ2

k for each composing road segment. Then,
the standard deviation of T̃i is calculated by summing the
variances of the composing road segments, ∆2

i =
∑Mi

k=1 σ
2
k.

This is because that t̃k follows normal distribution. Finally,
an EV’s trajectory can be represented as a sequence of road
segments it will pass in Tc+1 and their corresponding estimated
travel times {(si, T̃i)|i = 1, 2, . . . ,M}, where M denotes the
total number of road segments that the EV will pass in Tc+1.

2) Road Vehicle Density Calculation: Due to the inaccu-
racy of the above estimation, the estimated travel time in
{(si, T̃i)|i = 1, 2, . . . ,M} has a certain probability to be
accurate. That is, each vehicle only has a certain probability to
appear on a road segment at the estimated travel time. Then,
we use the probabilities of all the vehicles to calculate the
vehicle density of each road segment in Tc+1. Specifically, we
first calculate the probability that a vehicle will appear at each
road segment in its trajectory in Tc+1. Then, we sum up all the



vehicles’ appearance probabilities at a road segment in Tc+1

as the vehicle density of the road segment in Tc+1.
Given the next time slot Tc+1 = [tsj , t

e
j ] (e.g., [00:00,00:05]),

where j means it is the jth time slot in a day, tsj and tej are
the start time and end time of the time slot, respectively. The
central controller then measures each vehicle’s appearance
probability at si during [tsj , t

e
j ] by referring to the vehicle’s

estimated travel time to si. Therefore, we can calculate the
vehicle’s appearance probability at si during [tsj , t

e
j ] as

P (Ti6 t
e
j − tsj)=Φ(

tej − tsj − T̃i

∆i
)−Φ(

−T̃i

∆i
) (1)

where Ti denotes the EV’s actual travel time from current
position to si, and Φ(·) is the CDF of the standard normal
distribution with mean T̃i and standard deviation ∆i. Based
on the historical records of all vehicles’ travel time on si, we
can calculate the CDF of the travel time on si. By summing
up the appearance probabilities of the vehicles on si during
Tc+1, the central controller estimates the vehicle density of
each si in Tc+1 as:

dsic+1 =
N∑

k=1

Pk(Ti 6 tej − tsj) (2)

where N is the number of EVs that will pass si during [tsj , t
e
j ].

C. EV Driving Velocity Optimization Gaming

1) Overview: We refer to a previous work on traffic opti-
mization [28] for the establishment of the Stackelberg game.
In the Stackelberg game, the service leader (i.e., central
controller) considers the predicted average vehicle density of
a road segment, and then chooses a set of expected vehicle
densities, D={d1, d2, ..., dn}, that are achievable by vehicle
velocity adjustment. The central controller hopes to evenly
distribute the EVs over road segment set by properly assigning
a d value. The EV drivers receive D from the central controller
and picks a velocity in response to each di to maximize its own
utility (driving as fast and safely as possible while minimizing
the risk of congestion). Next, the central controller selects
the vehicle density, which is denoted by dl, that maximizes
the service efficiency of the wireless chargers and vehicle
flow rate of the road segments connecting them, and then the
EVs choose their velocities corresponding to the selected dl.
Finally, we solve the Stackelberg equilibrium of the game, i.e.,
the game reaches a state that the service efficiency of wireless
chargers is maximized while the EV drivers are satisfied with
the driving status (judged by driving velocity and associated
risk of congestion). The gaming is executed periodically. In
the following, we first introduce the utility of an EV driver
and the utility of the central controller, and then introduce the
gaming between them.

2) Utility Function of EV Drivers: For EV drivers, we
define a utility function as the level of benefit an EV driver
can obtain through driving by a certain velocity on road
segment si. An EV driver can receive more benefit (i.e.,
arrive at its target charger lane earlier than expected) if it
drives at a relatively higher velocity. However, as discussed
in Section I, if all EVs drive at their fastest velocities, their
risk of suffering from congestion may increase. Therefore, we
formulate an EV driver’s utility function as a value calculated
by subtracting the potential risk of congestion (Ur(·)) from

the driver’s satisfaction degree (Us(·)) resulted from driving
fast, as shown in Equation (3).

F (vi, αi) = Us(vi, αi)− Ur(d, vi) (3)
s.t. vi 6 vmax

i

where vi is the vehicle’s velocity for optimization, which is
selected by the vehicle itself; αi is a scale factor to make Us(·)
and Ur(·) comparable.

Specifically, an EV driver’s satisfaction degree Us(·) is
primarily determined by its driving velocity [21]. Us(·) ought
to be non-decreasing as each driver desires high velocity (i.e.,
short driving time to its target charger lane). Also, Us(·) should
reach the largest value only when the vehicle is driving at the
velocity corresponding to the vehicle density expected by the
central controller, which is denoted as fi(d). Meanwhile, the
derivative of the satisfaction degree is non-increasing because
the driver’s satisfaction degree gradually gets saturated when
the vehicle velocity increases to some level [23]. Considering
these properties, we design Us(·) as a concave function. Since
the Natural Logarithmic Functions are representative concave
functions [29], we define:

Us(vi, αi) = αi · ln(vi). (4)

An EV driver’s potential risk of congestion is closely related
to its vehicle flow rate [21]. As the EV is expected to drive
by the velocity corresponding to the d (i.e., fi(d)), we use a
Sigmoid function to approximate the probability of congestion
with respect to the EV’s selected driving velocity. If the EV
drives above the threshold fi(d), the probability of congestion
increases significantly. Therefore, we formulate an EV driver’s
potential risk of congestion as

Ur(d, vi) =
1

1 + e−(vi−fi(d))
dvi (5)

As the EV increases its velocity, its utility will firstly
increase to the maxima at some velocity around fi(d), and
then decrease. Thus, the EV’s velocity is adjusted by the
central controller, and meanwhile can drive by a relatively
fast velocity. Combining Equation (4) and Equation (5) into
Equation (3), we have:

F (vi, αi) = αi · ln(vi)−
1

1 + e−(vi−fi(d))
dvi (6)

s.t. vi 6 vmax
i

3) Utility Function of Central Controller: The central
controller always aims at maximizing EV flow rate on wireless
chargers and the road segments connecting them. Also, recall
that each wireless charger lane has a specified EV passing
velocity v′i, which enables the wireless charger lane to fully
charge the EV after driving through the charger lane (Section
III-B). Correspondingly, the utility function of the central
controller is defined as:

L(d) =

Ns∑
i=1

di · vi +

Ne∑
i=1

di · vi · e−|vi−v′
i| (7)

where Ns is the total number of road segments excluding
the wireless chargers in road segment set; Ne is the total
number of wireless chargers; Recall that in Section III-B, we
have explained that an EV will be fully charged only when
it drives through the wireless charger lane with a velocity
equal to or lower than the charger lane’s specified EV passing
velocity v′i. Considering that we also expect EVs to pass



through a wireless charger lane as fast as possible, we use the
e−|vi−v

′
i| on the utility part of wireless chargers to specify that

the central controller expects the EVs to pass through each
wireless charger lane at their specified EV passing velocity v′i.
A passing velocity other than this value will result in a utility
loss for the central controller.

4) Optimal Driving Velocity Selection: Recall that based
on Equation (2), the central controller predicts the vehicle
densities of all wireless chargers and the road segments to
them. It then calculates the average estimated vehicle density
of the wireless chargers and the road segments connecting
them during next period of gaming: dc+1 =

∑Ns

k=1 d
sk
c+1/Ns+∑Ne

k=1 d
sk
c+1/Ne. Based on dc+1, the central controller deter-

mines a range of expected vehicle densities that are achievable
by vehicle velocity adjustment, and offers these densities to
each vehicle for selection, which is defined as:

du = ln(u+ 1) · dc+1, u ∈ [1, ..., n] (8)

We use D={d1, d2, ..., dn} to denote the n levels of expected
vehicle densities for Tc+1. In practice, n should be at least
larger than the exponential constant (i.e., n > e ≈ 2.718)
so that the vehicle has multiple selections around dc+1. The
central controller notifies drivers of the D. If dc+1 leads to
an increased expected vehicle density (du), it means some
EVs will suffer from a higher risk of traffic congestion if
they all keep their current velocity. According to Equation
(6), to maintain the highest utility F (vi, αi), the EV drivers
will decrease driving velocity. Otherwise, the EV drivers’
risk of encountering traffic congestion will be lower, which
enables the drivers to increase driving velocity to maintain
the highest utility F (vi, αi). Note that the increment rate of
Us(·) (Natural Logarithmic Function) is slower than Ur(·)
(product of Sigmoid Function and Linear Function) when
velocity vi increases. Therefore, according to Equation (3),
increasing driving velocity on current road segment (vi) will
reduce a driver’s utility because Ur(·) will increase faster
than Us(·). Thus, driving at a slower velocity can prevent the
vehicle density of the wireless chargers and the road segments
connecting them from further increasing.

For each du ∈ D, if a driver will drive in its current road
segment si during the next time slot, it chooses a new velocity
that maximizes its utility F (·), denoted by viu:

viu = arg max
vi6vmax

i

F (vi, αi) (9)

If a driver will drive through more than one road segment si,
sj ,..., it chooses a set of velocities in each of the segments to
maximize its utility F (·), denoted by {viu, vju, ...} as shown
in Equation (10).

{viu, vju, ...} = arg max
vk6vmax

k

∑
k

γkF (vk, αk) (10)

Finally, the driver reports the n candidate velocities to the
central controller. To maximize its utility L(·) based on the
candidate velocities from all drivers, the central controller
determines the expected vehicle density (dl):

dl = arg max
du∈D

L(du) = arg max
du∈D

du
∑
Ns

viu (11)

The central controller then uses the dl as the new expected
vehicle density and notifies it to all the drivers. Then, each

driver picks the optimal velocity corresponding to dl from the
n candidate velocities.

VI. PERFORMANCE EVALUATION

A. Comparison Methods

To evaluate WPT-Opt’s performance, we compare it with
a representative charging station recommendation system [5]
(Recommend in short), and a baseline method, in which each
EV selects the nearest charging station for recharge (Baseline
in short). To make the methods comparable, they all use the
same deployment of wireless chargers based on the existing
positions of charging stations. In Recommend, when an EV
sends out a request for recharging, the central controller
calculates the non-charging time of each existing charging
station based on current occupancy of the charging station,
and the charger seeking time based on current traffic. Finally,
the central controller outputs the charging station with the
minimal charging time cost. While in Baseline, whenever an
EV requests a recharge, the central controller recommends
it the charger lane with the shortest driving time. Note that
the calculation of the driving time does not consider current
traffic state on road network. In WPT-Opt, we assume that the
target charger lane of the EVs are determined by the central
controller with the same method of Recommend based on
current traffic status and charger availability.

B. Experiment Settings

We set the charger lane length at each charging position
to be 1 km [2]. The battery capacities of the EVs follow a
uniform distribution between 32 kWh and 37 kWh, which
is the common battery capacity of public service EVs in
Shenzhen [1]. The charging rate of a charger lane is 150 kW
[2]. This means that each EV needs around 900 seconds (0.25
hours) to get a full recharge. That is, the specified EV passing
velocity of a wireless charger lane (v′i in Equation (7)) is 1
km/0.25 hours=4 km/h. We use SUMO [30] to simulate 10,000
EVs on Shenzhen’s road network for 24 hours. We set the SoC
threshold to be 20%. It is determined so that an EV is able to
use its residual SoC to reach its nearest charger lane [1], [4].
When the SoC of an EV is lower than the threshold, it will
send a charging request to the central controller. We suppose
that every EV starts driving with a random SoC value higher
than the threshold at the beginning of a day.

The metrics we measured are:
•Average non-charging time of EVs. For each EV, we mea-

sure its non-charging time at the chargers from 00:00 to
23:00. Then, we take the average non-charging time over all
the EVs. We also measure the CDF of the non-charging time
of each recharge. We measure this to compare the methods’
performance in reducing the EVs’ non-charging time.
•Average charger seeking time of EVs. For each EV, we

measure its charger seeking time to its target charger from
00:00 to 23:00. Then, we take the average charger seeking
time over all the EVs. We also measure the CDF of the
charger seeking time of each recharge of all the EVs. We
measure this metric to compare the methods’ performance
in reducing the EVs’ charger seeking time.
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Fig. 8: Average non-charging time of
all EVs per hour.

0 0.2 0.4 0.6

Non-charging (waiting) time (h)

0

0.2

0.4

0.6

0.8

1

C
D

F
 o

f 
re

c
h
a
rg

e
s

 

WPT-Opt

Recommend

Baseline

Fig. 9: Distribution of non-charging
time of all EVs’ recharges.

•Average number of charged EVs. We measure the total
number of charged EVs per hour during a day. We also
measure the CDF of the charge counts of all the EVs. We
measure this metric to compare the methods’ performance
in maximizing the service efficiency of all wireless chargers.
•Average vehicle flow rate of all road segments. We measure

the average vehicle flow rate of all road segments per
hour during a day. We measure this metric to compare the
methods’ performance in avoiding traffic congestion.

C. Experimental Results

1) Average Non-charging Time of EVs: Figure 8 shows
the average non-charging time of all the EVs per hour under
different methods. Figure 9 shows the CDF of the non-
charging time of each recharge of all the EVs. We can see
that the results follow: WPT-Opt<Recommend<Baseline.

Baseline always has the highest result during all times. This
is because that it does not consider the possible generation of
congestion at the chargers after determining the target charger.
When an EV arrives at a charger lane, there will usually be
several other EVs that have arrived at the charger lane prior
to its arrival and generate congestion. Therefore, the EV has
to wait until the other congested EVs finish their recharging,
which greatly increases the EV’s non-charging time before
recharge. This is also verified in Figure 9. We can see that the
non-charging time of most recharges in Baseline (> 80%) is
longer than 0.1 hours. Considering that an EV will look for
a recharge whenever its SoC is below 50%, and it only takes
450 seconds to recharge 50% of the EV battery, we conclude
that most EVs in Baseline are influenced by congestion.

In Recommend, the average non-charging time of the EVs
per hour of day and the CDF of the non-charging time are quite
approximate to those in Baseline. These results demonstrate
that Recommend is ineffective in preventing congestion at the
chargers. This is because that it makes the recommendation
without considering the future change of charger availability
and the traffic change on the road segments to the charger lane.
Thus, its estimated future EV arrivals at the charger lane is
not accurate, which may cause traffic congestion at the charger
lane or on the way to the charger lane.

The EVs’ non-charging time in WPT-Opt is much shorter
than that in the other methods. This is because that WPT-Opt
can utilize the EVs’ trajectories to estimate the future vehicle
density at the chargers, and has a game theoretic approach to
avoid the generation of traffic congestion at the chargers and
meanwhile enable the EVs to drive by their expected velocity.
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Fig. 10: Average charger seeking time
of all EVs per hour.
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Fig. 11: Distribution of charger seek-
ing time of all EVs’ recharges.

2) Average charger seeking Time of EVs: Figure 10 shows
the average charger seeking time of all the EVs per hour
under different methods. We can see that during most time in-
tervals, the results follow: WPT-Opt<Recommend<Baseline.
Figure 11 shows the CDF of the charger seeking time of each
recharge of all the EVs. We can see that around 80% of the
recharges have similar charger seeking time among different
methods, but the other 20% of the recharges follow: WPT-
Opt<Recommend<Baseline.

WPT-Opt always has the shortest charger seeking time.
Before optimization, the future vehicle density on the pre-
determined driving route has been deduced by the central
controller from the EVs’ trajectories. Thus, WPT-Opt enables
the central controller to maximally avoid road congestion
caused by competition on certain road segments. Meanwhile,
each EV can drive by a velocity as fast as possible. As a result,
WPT-Opt generates the shortest charger seeking time.

Recommend has the second shortest charger seeking time
to target chargers during most time intervals. However, during
the time intervals between 04:00 and 09:00, the EVs’ charger
seeking time in Recommend is even longer than that in
Baseline. This is because that the controller selects the route
with the minimum vehicle density and the charging station
with available charging point based on current vehicle density
on the road network and current availability of the charging
stations. Since the selected driving route and charging station
are not guaranteed to be free from traffic congestion, especially
during rush hours, the EVs are sometimes delayed by traffic
congestion generated in the near future.
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Fig. 12: Distribution of charge counts
of all EVs.

Baseline usually has the
longest charger seeking time.
This is because that it does
not have any approach to
avoid the road segments and
chargers that may suffer from
traffic congestion. We can
see that its charger seeking
time increases enormously af-
ter 09:00, and can be as long
as 2.5 hours. These results
demonstrate how bad the traffic congestion can degrade the
fulfillment of EVs’ charging requests.

3) Average Number of Charged EVs: Figure 12 shows the
CDF of the charge counts of all the EVs under different
methods. Figure 13 shows the total charging load created by
the recharges of all the EVs per hour under different methods.
We can see that the charge counts of the EVs and the charging
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Fig. 13: Total charging load of all
chargers per hour.
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Fig. 14: Average vehicle flow rate of
all road segments per hour.

load of the chargers are quite similar to each other. These
results show that all the methods have served the charging
demands of EVs, but with different time costs. Considering
that WPT-Opt has a much shorter charging time cost, these
results demonstrate that WPT-Opt can achieve a much higher
wireless charger service efficiency.

4) Average Vehicle Flow Rate of All Road Segments:
Figure 14 shows the average vehicle flow rate of all the
road segments per hour under different methods. We can see
the results follow: WPT-Opt>Recommend>Baseline. These
results are generally consistent with those demonstrated in
Figure 8 and Figure 10 due to the same reasons. It shows
that WPT-Opt can effectively avoid the generation of traffic
congestion at wireless chargers and the road segments to them.

VII. CONCLUSION

To maximize the service efficiency of wireless chargers,
we must properly coordinate EVs’ traffic and their arrival
at the chargers to avoid traffic congestion at the chargers
and on the road segments to them. Our proposed approach,
WPT-Opt, is the first work that maximizes the service ef-
ficiency of wireless chargers without generating congestion,
and meanwhile minimizes the EVs’ charging time cost before
charging. Our data analysis results confirm that EVs have
spatial and temporal preference on selecting chargers, and
such preferences can lead to competition for chargers. We also
analyzed the relation between vehicle density and vehicles’
actual driving velocity on a road segment. Supported by these
results, we formulate a non-cooperative Stackelberg game
between all the EVs and a central controller, in which each
EV aims at minimizing its charging time cost to its target
charger lane, while the central controller tries to maximally
avoid the generation of congestion on wireless chargers and
the road segments to them. Our trace-driven experiments on
SUMO demonstrate that WPT-Opt can maximally reduce the
average charging time cost of the EVs by approximately 200%
over comparison methods. In the future, we plan to consider
more EV charging behavior factors (e.g., different charging
time and target charger lane in weekday and weekend).
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