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ABSTRACT
Packet routing is important for Vehicular Delay Tolerant Networks
(VDTNs). Opportunistic routing algorithms based on historical
records are insu�ciently accurate in forwarder selection due to
movement randomness of vehicles. Trajectory-based routing algo-
rithms tackle vehicle movement randomness but cannot be directly
used in VDTNs due to the dependence on APs. In this paper, we
develop a distributed trajectory-based routing algorithm (called
MobiT) for VDTNs. �is non-trivial task faces three challenges.
First, vehicle trajectories must be su�ciently collected. Second, the
trajectories cannot be updated frequently due to limited resources
of the repository nodes. �ird, achieving high routing performance
even with partially collected trajectories. Our real trace study lays
the foundation of the design of MobiT. Taking advantage of di�er-
ent roles of vehicles, MobiT uses service vehicles that move in wide
areas to collect vehicle trajectories, and rely on the service vehicles
and roadside units (called schedulers) for routing scheduling. By
using regular temporal congestion state of road segments, MobiT
schedules the packet to arrive at a roadside unit prior to the des-
tination vehicle to improve routing performance. Further, MobiT
leverages vehicles’ long-term mobility pa�erns to assist routing.
Extensive trace-driven and real experiments show the e�ectiveness
and e�ciency of MobiT.
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1 INTRODUCTION
In recent few years, many research e�orts have been devoted

to Vehicular Delay Tolerant Networks (VDTNs) [1, 8]. VDTNs
can alleviate bandwidth burden on networks and serve areas with
sparse infrastructures. In such vehicular networks with sparse
connection, packet delivery between vehicles is important for many
purposes. For example, a vehicle needs to report a tra�c accident
to a police vehicle far from the crash site, or a vehicle using a
mobile social network wants to share a newsfeed with its friend
vehicle miles away. However, due to the high mobility of vehicles
and disconnected nature of VDTNs, e�cient packet delivery is
non-trivial.

Previous opportunistic routing algorithms [7, 8, 21, 22] de�ne dif-
ferent utilities (e.g., meeting probabilities) and forward the packet to
vehicles or Roadside Units (RSUs) that have larger utilities with the
destination vehicle. However, these algorithms use vehicles’ histor-
ical meeting records to schedule packet forwarding, which has been
proven insu�ciently accurate [27] due to movement randomness
of some vehicles.

Determining packet forwarder based on vehicles’ trajectories
is e�ective in handling movement randomness [10–12, 24]. In
the trajectory-based routing algorithms, vehicles repeatedly report
trajectories to Access Points (APs) sparsely located along roads.
A central server then uses these shared trajectories to schedule
forwarders to carry the packet to the destination vehicle in its
driving route. However, these algorithms cannot be directly used
in VDTNs due to the dependence on APs.

In this paper, we design MobiT, which derives vehicle Mobility
from Trajectories for routing. First, MobiT uses service vehicles
to collect vehicle trajectories, and relies on the service vehicles
and roadside units (RSU) (both are called schedulers) for determin-
ing routing path. Second, MobiT only requires each participating
vehicle to report its trajectory to a scheduler when it starts mov-
ing (called initial trajectory) rather than repeated reporting. To
tackle outdated trajectory, MobiT considers the temporal change
of road congestion state when using the initial trajectories for vehi-
cle movement prediction. �ird, MobiT exploits both short-term
mobility (i.e., trajectory) and long-term mobility (i.e., road/area
visiting pa�ern) as complementary approaches. When determining
routing path, MobiT schedules the packet to arrive at an RSU prior
to the destination vehicle, which generates higher performance
than scheduling direct meeting as in the previous trajectory-based
algorithms. When a routing path cannot be found, MobiT �nds
a path to let the packet approach the destination vehicle. If the
trajectory of the destination vehicle is unavailable, MobiT uses the
vehicle’s long-term mobility to forward the packet.

MobiT can also overcome some problems in the previous cen-
tralized trajectory-based methods. First, due to �uctuating road
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tra�c, it is very di�cult to schedule an exact meeting with the des-
tination vehicle regardless of the powerful capacity of the central
server. Second, vehicles sometimes rely vehicular communication
to maintain contact with the APs. �e trajectories in the central
server may be outdated due to vehicles’ intermi�ent connection
to the APs and possible packet loss in communication. �ird, the
selection of forwarders does not consider the change of road tra�c
at di�erent times and road segments. To our best knowledge, this
work is the �rst that realizes e�cient distributed trajectory-based
routing algorithm in VDTNs. �e remainder of the paper is orga-
nized as follows. Section 2 presents literature overview. Section 3
presents the design of MobiT. Section 4 presents the performance
evaluation. Section 5 concludes this paper with future directions.

2 RELATEDWORK
Opportunistic routing algorithms. �ese algorithms extract

utilities from vehicles’ historical records. �e packet is forwarded
at the direction maximizing the utility. SADV [7] lets packets wait
at intersections until the path with minimum delay is available. Ishi-
hara et al. [8] schedules packet delivery by the packet’s aggregated
demand and the historical condition of neighboring vehicles having
the same packet. EBT [21] utilizes users’ previous encounters to
construct a relation graph for packet forwarding. Tie et al. [22]
proposed the Robust Replication Routing (R3), which uni�es mesh,
MANET, DTN routing paradigms by predicting the distribution
of link delays. Kong et al. [14] proposed a frequency-divided in-
stantaneous neighbors estimation system for vehicular networks.
In [19], Schwartz et al. focuses on guidelines for the design of data
dissemination in vehicular networks. �ese works rely on historical
information to predict future encounter, but cannot guarantee high
e�ciency.

Trajectory-based routing algorithms. Several recent works
utilizing vehicles’ trajectories in routing have been proposed. Wu
et al. [23] found and used the spatio-temporal correlation of vehicle
mobility in data delivery. TBD [11], TSF [12] and STDFS [24] use
APs to collect vehicle trajectories. �en, the rendezvous position
between the destination vehicle and the packet is determined based
on accumulated trajectories, and the packet is forwarded to the
rendezvous position. Due to the sparsity of APs, ad-hoc network
is needed to bridge APs and vehicles. However, these algorithms
have drawbacks of susceptibleness to road congestion and possibly
outdated trajectories due to inaccessibility to APs, which a�ect the
accuracy of the forwarder selection.

3 SYSTEM DESIGN

We consider a VDTN withn vehicles denoted byNi(i = 1, 2, . . . , n)
and make following assumptions.

(1) Each vehicle is equipped with a Dedicated Short Range
Communication (DSRC) device [5]. When two vehicles are
within each other’s communication range, an encounter
happens.

(2) Each vehicle is equipped with a navigation system, which
generates trajectory consisting of future positions and es-
timated arrival times, and road maps [15, 25].

(3) �e area in the VDTN is partitioned into multiple sub-
districts with equal number of landmarks. Following [26],
we assign a center landmark for each sub-district.

(4) Each intersection is installed with an RSU which uses DSRC
for communication [6, 18]. Service vehicle can exchange
information with RSUs, while the others can only drop a
packet to an RSU.

�ere are existing works focusing on motivating users to share
mobility information [4] and ensuring users’ privacy [16]. We leave
the work for MobiT as our future work.

3.1 Representation of Vehicle Mobility

3.1.1 Short-term Mobility and Congestion-considered Update.
At the beginning of a trip, each vehicle generates its initial trajectory.
An initial trajectory of vehicle Ni is 〈Ni; {p0i , p1i , . . . , pQi };Ts〉,
where {p0i , p1i , . . . , pQi } represents the sequence of Q positions on
the trajectory. Ts is the starting time of this trajectory. Each vehicle
maintains its own short-term mobility information. While service
vehicle collects short-term mobility information from every vehicle
it meets. If a service vehicle meets another service vehicle or an
RSU, they exchange their known mobility information.

Congestion state table: MobiT use road segment, which is
the interval between two neighbor intersections, as the basic unit
of roads. It has been shown that the travel time on a road can
be estimated based on the congestion state of composing road
segments [13]. It is also noticeable that urban tra�c pa�ern repeats
in daily fashion [9]. �us, we use the congestion states of roads
under di�erent times to assist determining vehicle arrival times. We
�rstly design the table of delays, which records the travel times of
a road’s composing segments under congested and non-congested
cases based on historical statistics. �en, for each road, we design
a table of binary vectors to describe its proad congestion.

For each road segment, it has distinct travel times correspond-
ing to congested and non-congested situations [13]. For example,
College Ave has 6 segments as shown in Table 1. If segment 1 is
congested, it takes the vehicle 2min to drive through. Otherwise,
50s is needed for driving through. Suppose the segments 1, 2 and
4 are congested, and the other segments are non-congested, the
travel time needed to drive through College Ave is 50s+ 5min+6min
+20s+2min+10s=14min20s.

Table 1: Table of College Ave’s delays.
Segment ID 0 1 2 3 4 5
Congested (1) 2min 5min 6min 1min 2min 30s
Otherwise (0) 50s 2min 1min 20s 1min 10s

�en, for each sequence of road segments, we can use a binary
vector to depict its congestion states. For example, if the segments
1, 2 and 4 of College Ave are congested, current congestion state of
the road is [0, 1, 1, 0, 1, 0]. To collect all possible congestion states
of a road during di�erent times, the congestion state of the road is
sampled by a time unit, say per hour. �us, for each hour, we have
several sampling results representing all the possible congestion
states of the road at this time. Finally, we classify these congestion
states along with their respective probabilities in ascending order
of time, and get the table of congestion states of the road as shown
in Table 2. In Table 2, College Ave has several congestion states
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under each time interval. Each congestion state has a probabil-
ity, which measures its appearance frequency among all possible
congestion states. For example, during the interval from 00:00 to
01:00, College Ave has the probability of 0.6 to be in congestion state
[0, 1, 1, 0, 1, 0] and the probability of 0.4 to be in congestion state
[1, 0, 0, 0, 1, 0]. �erefore, the estimated travel time of College Ave
during this interval is 0.6× 14 min20s+0.4× 7min30s=11min36s.

Table 2: Table of College Ave’s congestion states.
Time interval Congestion states
00:00∼01:00 [0, 1, 1, 0, 1, 0], 0.6; [1, 0, 0, 0, 1, 0], 0.4
01:00∼02:00 [1, 1, 1, 1, 1, 0], 0.7; [0, 1, 1, 0, 0, 0], 0.3

… …

Since road tra�c follows certain long-term pa�ern even under
accident and weather change, using historical data to describe the
congestion states is reasonable [13, 20]. �e table of congestion
states and delays for all roads are computed o�ine. All schedulers
are preloaded with the two tables.

Estimation of travel time and deviation: To estimate the
travel time of a trajectory, a scheduler decomposes it into roads. For
each road, the scheduler refers to Table 2 for the road’s current con-
gestion state. �en, the scheduler refers to Table 1 for corresponding
delays of the covered segments. By summing the delays from the
start of each trajectory, the scheduler estimates the vehicle’s future
travel time. For example, suppose a vehicle will drive through Col-
lege Ave between 00:00 and 01:00. According to Tables 1 and 2, the
travel time of College Ave has probability of 0.6 to be 14min20s and
probability of 0.4 to be 7min30s. �erefore, the road’s estimated
travel time is µ = 0.6×14min20s+0.4×7min30s=11min36s, with
standard deviation
σ =

√
0.6× (14min20s− 11min36s)2 + 0.4× (11min36s− 7min30s)2 =

3min20s.
3.1.2 Long-term Mobility. In this section, we introduce long-

term mobility, namely routine and vehicular friendship.
Routine: Vehicles’ long-term mobility has regularity [27], which

is re�ected as certain roads that are frequently driven by the vehicle
at speci�c times. For example, people usually take the same rou-
tine routes to commute between home and work place. Moreover,
vehicles tend to repeat their routine routes on a daily basis. For
example, people regularly drive from home to work place at around
8:10 every morning. �erefore, we depict the routines of a vehicle,
say Ni, as shown in Table 3.

Table 3: Table of a vehicle’s routines.
Prob Route Ts Te

0.6 {p0i1, . . . , p
m
i1} 08:10 ∼ 08:20 08:30 ∼ 08:45

0.2 {p0i2, . . . , p
n
i2} 13:00 ∼ 13:20 13:30 ∼ 13:45

In Table 3, each row represents a routine ofNi. Route represents
the series of positions a routine covers. Ts is the start time range
of the routine. Te is the end time range of the routine. Ts and
Te are determined from Ni’s historical records. �e probability
indicates the likelihood that the vehicle will follow the routine
and is calculated as PRt(Ni) = mt/M , where mt is the number
of occurrences that Ni followed routine Rt as a trajectory; M is
the total number of trajectories that Ni once drove during a time
period, say 30 days. �e routine table stores the routines with the
sum of probabilities larger than and closest to 80%. �is threshold
can be adjusted based on system constraints.

Friendship: People living in the same area are likely to follow
similar routines. For example, suppose Alice and Bob live in the
same suburban community, every morning they drive the same
highway to downtown. Given a packet targeting at Alice, the mobil-
ity information of Bob may be helpful. Based on such observation,
MobiT measures the relationship between vehicles in terms of their
similarity on routine.

Overlapping of routines: We de�ne two vehicles are friends if the
ratios of their similar routines in their respective overall routines
are higher than a threshold, say αf . For example, suppose vehicle
Ni has routines: R1, R2 and R3, vehicle Nj has routines: R2 and
R3, and αf is 0.5. Since R2, R3 are the similar routines of Ni and
Nj , and they take up 66.7% and 100% of the total routines of Ni
and Nj , respectively, which are higher than 0.5, these two vehicles
are friends.

Since the similar routines of two vehicles will not be completely
identical, we use spatiotemporal overlap to measure their sim-
ilarity. Given two routines, say R1 of Ni and R2 of Nj . R1

covers positions: r1 = {pi1(0), . . . , pi1(m)}, start time range
Ts1 and end time range Te1, while R2 covers positions: r2 =

{pj2(0), . . . , pj2(m
′
)}, start time range Ts2 and end time range

Te2. We use T̄s and T̄e to denote the mean ofTs andTe, respectively.
�en, R1 and R2 are similar if:

∣∣T̄e1 − T̄e2∣∣ < τt∣∣T̄s1 − T̄s2∣∣ < τt (1)
|r1
⋂
r2|

|r1
⋃
r2|

> γs (2)

where τt is the threshold bounding the temporal deviation of
start times and end times. γs is the threshold bounding the spatial
deviation of the positions. �e thresholds are determined based on
the tra�c �ow of speci�c scenes. For metropolitan cities, relatively
high deviation should be tolerated. �erefore, we set αf = 0.5,
τt = 15min and γs = 0.6.

In MobiT, routine extraction and friendship determination are
conducted by service vehicles and RSUs since they have the bulk of
vehicles’ short-term mobility information. A representative friend
list is as shown in Table 4.

Table 4: Table of friends.
Vehicle ID Friends
N1 N0(0.5), N2(0.3), N3(0.2), N4(0.1)
N4 N0(0.4), N1(0.2)
… …

3.2 Routing Process
MobiT aims to deliver the packet to the encounter position prior to
the destination vehicle, the packet then waits at a nearby RSU for
the destination vehicle. In MobiT, service vehicles and RSUs sched-
ule the forwarding of packets since they have collected vehicles’
mobility information. �e scheduling of routing can be summa-
rized to three cases. 1) When the destination vehicle’s short-term
mobility information is available, the packet will be forwarded
to the destination vehicle’s future position (or nearby position)
along a trajectory-based routing path that leads to the shortest
delay; 2) When the scheduler only has the destination vehicle’s
long-term mobility information, the packet will be forwarded to the
destination vehicle’s or its friend’s routine; 3) When no mobility
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information of the destination vehicle is available, the packet will
be forwarded to service vehicles, aiming to increase its probability
of �nding more useful information.

3.2.1 Short-term Mobility Based Routing. For trajectory-based
routing path determination, MobiT extends its predecessor, STDFS [24].
In STDFS, based on travel time predictions, the central server con-
structs an encounter graph and �nds the chain of trajectories con-
necting current position of the source vehicle and the destination
vehicle with acceptable delay and delivery probability. MobiT fur-
ther considers road tra�c of each road segment in di�erent times
for calculating vehicle travel time. Moreover, MobiT aims to deliver
the packet to the encounter position prior to the destination vehicle.

3.2.2 Long-term Mobility Based Routing. It is possible that a
scheduler cannot �nd the proper short-term mobility information.
In this case, the long-term mobility information (i.e., the routine
table (Table 3) and friend table (Table 4)) will be used to guide the
packet to the activity area of the destination vehicle. Speci�cally,
from the routine table, according to current time, the scheduler
�rstly determines which routine the destination vehicle is likely
to use. �e routine is represented by the positions covered by the
routine ({pi1(0), . . . , pi1(m)}) with mean end time T̄e. �en the
scheduler also uses encounter graph to �nd chains of trajectories
that connect current position of the source vehicle with the desti-
nation vehicle’s routine.

�e process of selecting routing chain is the same as that with
short-term mobility. Since the routines can only be auxiliary, we
�lter out the invalid chains. �e remaining time of the destination
vehicle’s routine from current time Tc is (T̄e − T̄c) from Table 3.
�en, to ensure the packet can be forwarded to the destination
vehicle before it arrives at the ending point of the routine, the
scheduler �lters the chains with Di ≤ T̄e − Tc, where Di is the
estimated delivery delay. Finally, the chain with the shortest travel
time is selected.

If the destination vehicle’s routine is also unavailable, the sched-
uler refers to the table of friends. For example, given destina-
tion vehicle N1, Table 4 shows its friends are N0, N2, N3 and
N4. Among the friends with available mobility information, the
scheduler chooses the friend vehicle that has the highest ratio of
similarity with N1. �en the friend’s mobility information will be
used as previously described.

3.2.3 Routing withoutMobility Information. It is likely the sched-
uler doesn’t have any useful mobility information. If the scheduler
is a service vehicle, it will keep the packet. If the scheduler is a
RSU, it will �rst keep the packet and then transfer it to the service
vehicle passing by.

Because each scheduler stores partial mobility information of
vehicles in the system, a routing path generated by a scheduler may
not be the best routing path. �erefore, whenever a node carrying
a packet encounters a scheduler, it requests the scheduler to update
the routing path if a chain with shorter delivery delay is found.
In the routing process, if the packet misses the next forwarder, it
requests nearby scheduler to launch a new round of routing.

4 PERFORMANCE EVALUATION

We used the Rome [2] and the San Francisco [17] traces, which
last for 30 days, for evaluation. �e Rome trace has has 315 taxis
and 4638 landmarks, and the San Francisco trace has 536 taxis and
2508 landmarks. We develop a trace-based simulation environment
which is driven by each vehicle’s movement event [3, 4].

�e collection of congestion table and delay table was �nished
o�ine. For Rome and San Francisco, the threshold speeds to de-
termine congestion are 20MPH and 30MPH, respectively [2, 17].
�e congestion state of each road segment was sampled per hour.
For both traces, we set the initial period to 7 days, during which
service vehicles collected and disseminated mobility information.
Meanwhile, service vehicles and RSUs extracted vehicles’ routines
as in Section 3.1.2, and determined friendship between vehicles by
Equation (1) and (2) with αf = 0.5, τt = 15min and γs = 0.6.
Request rate is the number of packets generated every 24 hours in
both traces and was set to 40 by default. Packet TTL, which is the
valid time of a packet, was set to 24 hours. �e TTL for short-term
mobility information depends on trip duration.

We compared MobiT with two representative algorithms: the
Shared-Trajectory-based Data Forwarding method (STDFS in
short) [24], and the Robust Replication Routing (denoted by R3) [22].
STDFS depends on vehicles’ trajectories reported through APs to
schedule future meeting position between forwarder and destina-
tion vehicle. In R3, vehicles record their historical contact with oth-
ers. �e packet carrier utilizes the historical delays of the vehicles
to the destination vehicle to guide packet routing. In simulations,
we equipped 2782 and 1504 landmarks with RSUs/APs in Rome and
San Francisco, respectively, which is as speci�ed in STDFS [24]. We
measured following metrics:

• Success rate: �e percentage of packets that successfully
reach their destination vehicles.

• Average delay: �e average time (in seconds) used by pack-
ets to reach their destination vehicles.

• Average number of information queries: �e average num-
ber of information queries transmi�ed among nodes.

• Average vehicle memory usage: �e average number of
memory units used by each vehicle.

4.1 Experimental Results
In the experiment, we varied the packet TTL from 18 hours to 33
hours with 3 hours as the step size.

4.1.1 Success Rate. Figure 1(a) and Figure 2(a) show the success
rates of the algorithms under di�erent packet TTLs in both traces.
In these �gures, the success rates follow: MobiT>STDFS>R3. We
can see that MobiT always has the highest packet delivery success
rate than the other two algorithms under various situations.

�e success rates of all algorithms remain nearly constant under
di�erent request rates, but increase with the ascending of packet
TTL. R3 always has the lowest success rate. �is is because vehi-
cles have independent and random movement, vehicles’ historical
meeting records with the destination vehicle does not guarantee
another meeting with it in future. �us the selection of forwarder
may be mistaken.

In contrast, STDFS has much higher success rate. It is because
the packet is always forwarded to a future position of the destina-
tion vehicle with certain accuracy. If vehicles’ movement is not
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Figure 1: Performance with di�erent TTLs using the Rome trace.
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Figure 2: Performance with di�erent TTLs using the San Francisco trace.

in�uenced by road congestion, or its trajectory in central server
is continuously updated without disconnection, the forwarder is
highly likely to meet the destination vehicle.

MobiT always achieves the highest success rate. �is is because
MobiT considers road congestion state in estimating vehicles’ ar-
rival times on trajectory, which makes the estimation more tolerant
to tra�c change. Also, MobiT is not afraid that trajectory may be
outdated because it uses road delay table corresponding to road con-
gestion to dynamically estimate the arrival times of vehicles when
scheduling routing. Moreover, MobiT aims to let packet arrive at
the meeting position prior to the destination vehicle through con-
sidering various kinds of mobility information, which also increases
the success rate.

4.1.2 Average Delay. Figure 1(b) and Figure 2(b) show the met-
ric under di�erent packet TTLs in both traces. In Rome, the average
delays follow: MobiT<STDFS<R3. While in San Francisco, the av-
erage delays follow: MobiT<R3<STDFS. We can see that MobiT
achieves the best performance.

R3 does not know the position of the destination vehicle, so it
is likely to select the vehicle that will not meet the destination
vehicle as forwarder. �erefore, it has the highest delay. Although
STDFS knows the future position of the destination vehicle from
its trajectory, it can only forward packet when a complete chain
of trajectories connecting the source vehicle and the destination
vehicle is available. Also the destination vehicle’s disconnection
to APs will make its trajectory outdated, thereby hindering the
e�cient delivery of the packet. So STDFS ranks the second. MobiT
utilizes various kinds of vehicles’ mobility information to help the
packet keep approaching the actual activity area of its destination
vehicle, so it has the shortest delay.

4.1.3 Average Number of Information�eries. Figure 1(c) and
Figure 2(c) show the metric of the algorithms under di�erent packet
TTLs in both traces. �e average number of information query
follow: R3<MobiT<STDFS. We can see that MobiT achieves less
information query overhead than STDFS but more information
query overhead than R3.

�is is because STDFS requires vehicles to repeatedly report their
trajectories to the APs, so it has the highest number of information
query. In contrast, MobiT only needs vehicles to report their initial
trajectory to schedulers. �erefore, it ranks the second. In R3,
information query only happens in the encounter of nodes with
suitable delay predictions. �erefore, it ranks the lowest.

4.1.4 Average Memory Usage. Figure 1(d) and Figure 2(d) show
the metric of the algorithms under di�erent packet TTLs in both
traces. For MobiT, we additionally measured the metric for service
vehicle and RSU, which is represented with “Service”. �e metric fol-
lows: R3>Service>MobiT>STDFS in Rome, and Service>R3>MobiT>
STDFS in San Francisco. We can see that the memory usage of gen-
eral vehicle is comparable to the one of STDFS.

Since R3 has duplicated packets, and each vehicle needs to main-
tain the distribution of path’s historical delays, vehicles in R3 have
the highest memory usage. In MobiT, general vehicles only need to
maintain short-term mobility information and occasional packets.
�erefore, MobiT uses much lower memory than R3. On the other
hand, service vehicles and RSUs need to maintain much mobility
information and awaiting packets. �erefore, their memory us-
age is comparable to that of R3. In STDFS, vehicles only need to
record their trajectory. In contrast to MobiT, in which a vehicle may
need to help forwarding packet even if they are not determined
to approach the destination vehicle, STDFS only requires vehicles
that can form a complete chain of trajectories between the source
vehicle and the destination vehicle. �erefore, STDFS uses the least
memory.

5 CONCLUSION
Message delivery is an important function in VDTNs for Intelligent
Transportation Systems. Previous opportunistic routing algorithms
for VDTNs cannot achieve high success rate and low delay due
to insu�ciently accurate estimation of vehicles’ future encounter.
Previous trajectory-based routing algorithms can overcome this
drawback but require APs hence cannot be directly used for decen-
tralized VDTNs. We propose MobiT, a distributed trajectory-based
routing algorithm for VDTNs. MobiT aims to let the packet arrive
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at a RSU prior to the destination vehicle. By taking advantage of
travelling features of di�erent vehicles, MobiT uses public service
vehicles and RSUs to collect vehicle mobility information in a dis-
tributed manner and schedule trajectory-based routing paths to
destination vehicles. To avoid frequent communication for trajec-
tory updates, trajectories only need to be reported once and then
are updated based on stored road segment congestion state at di�er-
ent times. Extensive trace-driven and real-world experiments show
MobiT’s higher e�ciency and e�ectiveness compared with previ-
ous routing algorithms. In the future, we plan to further exploit
vehicles’ relationship in routing.
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