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Abstract—Previous Electric Vehicle (EV) charging scheduling
methods and EV route planning methods require EVs to spend
extra waiting time and driving burden for a recharge. With
the advancement of dynamic wireless charging for EVs, Mobile
Energy Disseminator (MED), which can charge an EV in motion,
becomes available. However, existing wireless charging scheduling
methods for wireless sensors, which are the most related works
to the deployment of MEDs, are not directly applicable for the
scheduling of MEDs on city-scale road networks. We present
MobiCharger: a Mobile wireless Charger guidance system that
determines the number of serving MEDs, and the optimal routes
of the MEDs periodically (e.g., every 30 minutes). Through
analyzing a metropolitan-scale vehicle mobility dataset, we found
that most vehicles have routines, and the temporal change of the
number of driving vehicles changes during different time slots,
which means the number of MEDs should adaptively change
as well. Then, we propose a Reinforcement Learning based
method to determine the number and the driving route of serving
MEDs. Our experiments driven by the dataset demonstrate
that MobiCharger increases the medium state-of-charge and the
number of charges of all EVs by 50% and 100%, respectively.

I. INTRODUCTION

Due to limited battery capacity [1], [2], the continuous run-
ning of EVs is a major problem. Many EV charging scheduling
methods that aim to optimize the charging efficiency of EVs in
stationary charging stations have been proposed [1], [3]–[7].
Generally, these methods focus on utilizing various statistical
models (e.g., Hidden Markov Chain for describing charging
demand) and controlling methods (e.g., multi-objective opti-
mization) to recommend the optimal target charging stations
to EVs to minimize charging time cost (i.e., time wasted in
driving and waiting until charging complete), based on the
status information of charging stations such as location and
charger availability. However, due to the limited number of
stationary charging stations in a city, EVs may still need to
wait for a long time during charging peak hours [8].

To overcome the problem, many EV route planning methods
have been proposed [8]–[11]. The main idea of these works
is to design routing methods to give routing recommendation
to an EV, which satisfies multiple energy constraints of the
EV. For example, the EV’s charging time cost must be shorter
than a certain threshold, the EV’s energy consumption and
travel time should be minimized. Although these methods
can generate the optimal path to a the destination of an
EV considering multiple constraints, the EV still need to
compromise its original driving route and spend extra driving
burden in fulfilling its charging requests.
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Fig. 1. Illustration of MED charging.

Recently, Mobile Energy Disseminator (MED) [12]–[14],
which can charge an EV in motion, becomes available. As
shown in Figure 1, an MED is equipped with several Trans-
mitter Coils and drives independently as a mobile charging
station. This charging approach is defined as cooperative EV-
to-EV (V2V) dynamic wireless charging [15]. If an MED can
proactively encounter and charge an EV, the EV will not
need to spend extra time to drive to a charging station to
receive a recharge and its state-of-charge (SoC) can always
be maintained via encountering with different MEDs during
its driving. Deploying more MEDs in the road network can
satisfy the demands of more EVs on roads but generates more
monetary cost and also higher traffic on roads, and vice versa.
Thus, an interesting problem is how to consider the mobility
records of the EVs (e.g., historical trajectories, SoC) and the
limited battery capacity of MEDs to minimize the total number
of MEDs, maximize the number of encountering EVs of all the
MEDs per unit time (e.g., 15 minutes), and meanwhile ensure
that each EV can maintain its SoC above 0?

In Wireless Sensor Network (WSN) research area, many tra-
ditional works have been proposed to optimize the scheduling
and routing of mobile chargers that move and replenish the
sensors [16]–[21]. However, most of these methods are only
applicable for small-scale static WSNs with around hundreds
of sensors nodes due to their lack of effective methods on
describing the dynamic change of city-scale vehicle traffic
(e.g., driving trajectory, vehicle density) or adapting to the
real-time change of the number of driving EVs (i.e., change
of charging demands) when guiding the mobile chargers.

To solve the problem, we propose MobiCharger, a Mobile
wireless Charger guidance system that determines the number
of serving MEDs, and the optimal routes of the MEDs
periodically (e.g., every 30 minutes). First, we analyzed a long-
term metropolitan-scale vehicle mobility dataset that records
the trajectories of 15,610 taxicabs, which consist of 6,510 EVs,
and 12,386 customized transit service vehicles (e.g., Uber,
Lyft). In this paper, if an EV’s ratio of driving a trajectory



at around a specific time (the variance of the trajectory start
times is no higher than a threshold (e.g., 1/2 hour)) during
a time period (e.g., 30 days) is higher than a threshold (e.g.,
20%), we define this trajectory the EV’s routine. Our data
analysis observations are as follows:

(1) We found that most taxicabs and customized transit service
vehicles have routines, which is especially conspicuous for
private vehicles due to people’s daily routines [22], [23]. The
combination of the vehicles’ current driving trajectory (i.e.,
short-term mobility information) and routines (i.e., long-term
mobility information) can be utilized to estimate the density
of EVs that the MEDs can potentially offer charging.
(2) We found that the number of driving vehicles changes
during different time slots (i.e., 30-minute-long), which means
the number of required MEDs should also adaptively change.

The observations support the design of MobiCharger. Mo-
biCharger combines the arrival probabilities of multiple vehi-
cles to estimate the vehicle density of the given road segment
during specific time durations from both long-term and avail-
able short-term mobility information. Based on the estimated
vehicle density, MobiCharger schedules MED deployment
(i.e., determining the number of MEDs and the driving route of
each MED) by using Reinforcement Learning (RL). The inputs
to the RL model include the status of each MED (SoC and
reachable road segments) and the outputs include the guidance
on where to drive to serve EVs for each MED. The reward is
determined based on the number of serving MEDs, the number
of EVs that all MEDs can possibly charge, and the estimated
total distance that MEDs need to drive given certain assigned
road segments. In summary, our contributions include:

(1) We analyze a metropolitan-scale taxicab dataset to gain
insights on vehicle driving trajectories and temporal change
of the number of driving EVs on the road network, which
serve as the foundation for MobiCharger design.
(2) We propose MobiCharger, a Mobile wireless Charger guid-
ance system that determines the number of serving MEDs, and
the optimal routes of the MEDs periodically (e.g., 30 minutes)
that minimizes the total number of MEDs, maximizes the
number of encountering EVs of all the MEDs, and meanwhile
ensures that each EV can maintain non-zero SoC all the time.
(3) We conduct an extensive trace-driven evaluation of Mo-
biCharger. Compared with the previous methods, Mo-
biCharger increases the medium state-of-charge and the num-
ber of charges of all EVs by 50% and 100%, respectively.

In our knowledge, MobiCharger is the first to optimize the
driving paths of MEDs to minimize the total number of MEDs,
maximize the number of encountering EVs of all the MEDs,
and meanwhile ensure that each EV has sufficient SoC all
the time. The remainder of the paper is organized as follows.
Section II presents literature review. Section III presents our
metropolitan dataset measurement results. Section IV presents
the detailed design of MobiCharger. Section V presents per-
formance evaluation results. Section VI concludes the paper
with remarks on our future work.

II. RELATED WORK

Charging Scheduling of EVs. Many works that focus on
optimizing the scheduling of EVs have been proposed. Based
on the analysis of charging and discharging processes between
power grid and EVs, Yu et al. [6] proposed a coalitional
game to evenly distribute charge load. Malandrino et al.
[7] formulated a game theory based method to optimize the
charging load considering EVs’ charging positions, charging
time and charger availability. Tian et al. [5] proposed to use
each EV’s historical charging events, real-time trajectories
and current traffic state to recommend charging stations with
the minimal time cost. Tan et al. [4] developed a distributed
optimization algorithm to optimize the demand side manage-
ment problem for the future smart grid with EVs. Kang et
al. [1] proposed a charging strategy by considering optimal
charging priority and charging location based on electric price.
Bashash et al. [3] proposed a convex quadratic programming
framework for the charge pattern optimization of EVs under
time-varying electricity prices. However, since multiple EVs
may simultaneously compete for the same charging station
during charging peak hours, some EVs may have to spend
extra time to wait for their turn, which greatly reduces the
charging service efficiency [8]. Cooperative V2V dynamic
wireless charging can potentially mitigate this problem, but
an MED guidance system that minimizes the total number
of serving MEDs, maximizes the number of the MEDs’
encountering EVs, and meanwhile prevents each EV from SoC
exhaustion is necessary.
Route Planning for EVs. Many works EV route planning
methods have been proposed. Eisner et al. [9] proposed to
consider the EV’s battery capacity in the calculation of edge
costs (e.g., energy consumption, distance) to optimize the EVs’
driving route. Sachenbacher et al. [10] further proposed to
dynamically adjust the edge cost according to the specific
parameter of an EV (e.g., weight, aerodynamic resistance) in
generating the optimal route. Schneider et al. [8] proposed to
combine customer appearance time, customer demand, battery
capacity constraints and charging station locations, to mini-
mize the EV’s energy consumption. Sarker et al. [11] utilized
Autoregressive Integrated Moving Average (ARIMA) model to
predict traffic volume, and determined the optimal route that
minimizes energy consumption, travel time, charging cost, and
range anxiety. However, they focus on generating the optimal
path from the EV’s current position to the EV’s destination,
which creates extra driving burden on the EVs. Cooperative
V2V dynamic wireless charging can potentially mitigate this
problem, but an MED guidance system described above is
needed, which is the focus of this paper.

III. METROPOLITAN-SCALE TRACE DATA ANALYSIS

A. Dataset Description and Definitions

In this analysis, we use the data recorded from Jan 1, 2015
to Dec 31, 2015 for measurement, which include:
(1) Taxicab Dataset. This dataset records the status (e.g.,
timestamp, GPS position, velocity, occupancy) of 15,610 taxi-
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Fig. 2. Distribution of the ratios of
frequently driven trajectories.
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Fig. 3. Distribution of the start times
of three vehicle trajectories.

cabs. 6,510 of them are electric taxicabs. This dataset is used
for analyzing the mobility characteristics of EVs.
(2) Dada Car Dataset. This dataset records the status (e.g.,
timestamp, position, velocity) of 12,386 electric Dada Cars (a
customized transit service similar to UberPool). This dataset
is also used for analyzing the mobility characteristics of EVs.
(3) Charging Station Dataset. This dataset records the GPS
position and number of chargers of 81 existing plug-in charg-
ing stations in Shenzhen. This dataset is used for simulating
the recharge of MEDs in experiment.
(4) Road Map. The road map of Shenzhen is obtained from
OpenStreetMap [24]. We use a bounding box with a south-
west coordinate (lat=22.4450, lon=113.7130), and a north-east
coordinate (lat=22.8844, lon=114.5270) to crop the data.

Definition 1: Vehicle Trajectory. A vehicle trajectory is a
sequence of Ne time-ordered landmarks, where each landmark
is represented by a latitude and a longitude.

Definition 2: Vehicle Routine. A vehicle’s trajectory is a
routine if the vehicle’s probability of driving the trajectory
at around a specific time (the standard deviation of the start
times is no higher than the threshold (i.e., 35 minutes in our
analysis)) during a time period (i.e., 365 days in our analysis)
is higher than a threshold (i.e., 20% in our analysis).

B. Dataset Analysis

1) Observation 1: Existence of Vehicle Driving Routines:
The Cumulative Density Function (CDF) of the calculated
ratios of of all the vehicles is illustrated in Figure 2. We can
see that for about 80% of the vehicles, more than 55% and
maximally about 77% of their trajectories are their frequently
driven trajectories. This result implies that most vehicles
do frequently drive several similar trajectories in different
days. Besides, we are also interested in the start time of the
frequently driven trajectories because knowing the trajectories
and their start time can exactly tell us where and when the
vehicles are likely to appear. Driven by this motivation, we
collected the distribution of the start times of each frequently
driven trajectory, and randomly selected the results of three
trajectories for illustration. Figure 3 shows the histogram of
the start times of each selected trajectory. The first trajectory
(Trajectory 1) is generally driven at around 19:00 every day,
the second trajectory (Trajectory 2) is generally driven at
around 09:30 every day, and the third trajectory (Trajectory 3)
is generally driven at around 14:30 every day. We can see that
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Fig. 4. Number of driving EVs over
time.
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Fig. 5. Number of road segments that
have driving EVs over time.

most start times of Trajectory 1 vary within 20 minutes around
19:00 and most start times of Trajectory 3 vary within 30
minutes around 14:30. In contrast, the start times of Trajectory
2 vary over a wider range (as long as 1 hour) around 09:30.
This means that the start times of Trajectory 1 and Trajectory
3 vary less than those of Trajectory 2.

2) Observation 2: Temporal Change of the Number of
Driving EVs: Figure 4 shows the calculated average number
of driving EVs in each hour of a day. We can see that during
the time slots between around 02:00 and 05:00, the number
of driving EVs significantly dropped to less than 8,000. This
is primarily because that during these time slots, the human
transit demand for taxicabs and Dada cars greatly decreased.
Some taxicabs and Dada cars chose to stop running during
these time slots to save cost. Then the number of driving EVs
quickly increased to around 18,000 at around 09:30, which
corresponds to the “rush hour” in the morning of a day. At
around 12:00, there is a slight drop-down on the number of
driving EVs due to reduced human transit demand at noon.
Then the number of driving EVs increased to another peak
at around 19:30, which corresponds to the “rush hour” in the
evening of a day. These results demonstrate that the number
of EVs that the MEDs need to support to keep running on the
road network varies during different time slots.

We measured the number of road segments that have driving
EVs during each time slot in each day throughout the 365 days.
Figure 5 shows the average number of road segments versus
hour of day. We can see that the change of the number of
road segments that have driving EVs is generally similar as the
change of the number of driving EVs in Figure 4. However,
there are several conspicuous drops of the number of road
segments that have driving EVs at around 10:00, 13:00 and
17:00. This may be because that there are not many passengers
requesting transit during these time slots, so some taxicabs and
Dada cars chose to wait at some places with high likelihood
of passenger appearance to save driving cost [25]. From these
results, we can conclude that in addition to adjusting the
number of the serving MEDs, we should also optimize the
driving route of the MEDs.

IV. SYSTEM DESIGN

A. Framework of MobiCharger

1. Vehicle mobility information derivation. First, we clean
the raw positions by filtering out the positions that are not in



the Shenzhen area. Then, we reorder the cleaned positions by
timestamp and map them on the Roadmap with Landmarks
and Road Segments to generate the Trajectories Represented
in Landmarks of EVs as explained in Section III-A.
2. EV Traffic Density Estimation (Section IV-B). Following
the first stage, we combine the EVs’ current Trajectories
Represented in Landmarks and routines to complete EV Traffic
Density Estimation for each road segment of the road network.
3. Reinforcement Learning based MED Routing (Sec-
tion IV-C). Based on the real-time status of EVs, we apply the
EV Traffic Density Estimation to determine the road segments
with new changes of EV traffic. Then we train and utilize
the Reinforcement Learning based MED Routing to decide
the place each MED should drive to as a response to the
traffic change, and the place can be the originally planned road
segment, a new road segment or an MED’s nearest parking lot.

B. EV Traffic Density Estimation

Most previous vehicle density estimation works [26], [27]
fail to estimate the movement of individual vehicles (i.e.,
arrival time on any position of the vehicle’s driving route).
Since the future vehicle density estimation accuracy of a road
segment is determined by the arrival estimation of the vehicles
that will drive through the road segment in the near future (e.g.,
5 minutes), accurate estimation of each individual vehicle’s
movement will help generate a more accurate vehicle density
estimation. Therefore, we need a more accurate method to
estimate vehicle density in the near future. As defined in
Definition 2, each EV’s current trajectory demonstrates the
EV’s approximate position in the near future (e.g., 15 minutes).
If we combine the trajectories of all the EVs, we may be able
to deduce the density of EVs at each road segment during
specific time slots. However, even if a vehicle’s trajectory
from its origin to destination is determined, the EV’s actual
time spent on traveling through the road segments in the
trajectory may vary within a certain range due to the dynamic
change of traffic status. That is, the travel time of a road
segment may follow a certain statistical distribution. If we
can properly model the statistical distribution of the travel
time, we can estimate each EV’s probability of appearing on
the road segments included in its current trajectory. Then by
summing up all the EVs’ probabilities of appearing on the road
segment during specific time slots, we can predict the density
of EVs on each road segment during the time slots. The key
problem here is: how to model the statistical distribution of
road segment travel time and utilize the model to predict the
future EV density of each road segment?

It has been confirmed by several previous methods that the
Gamma distribution can be utilized to model the distribution
of the travel time of a road segment with a sufficiently high
accuracy [28], [29]. We build our EV density estimation
method based on the modeling results of these methods.
Suppose the Gamma distribution of the travel time of a
road segment ei is represented as Ti ∼ Γ(κei , θei), where
parameter κei determines the shape of Γ, and θei determines
the scale of Γ. Specifically, the travel time distribution of each

road segment can be obtained through calculating the EVs’
travel time reflected in historical trajectory data. According
to the characteristics of Gamma distribution [28], [30], the
parameters κei and θei are computed with the mean travel time
E[Ti] = µi and the travel time variance V ar[Ti] = σ2

i using
the relationship among the mean E[Ti], the variance V ar[Ti],
κei , and θei such that: E[Ti] = κeiθei , and V ar[Ti] = κeiθ

2
ei

for Ti, κei , θei > 0.
Therefore, the parameter θei can be computed as the road

segment’s mean travel time divided by the road segment’s
travel time variance: θei = V ar[Ti]

E[Ti]
=

σ2
i

µi
. Similarly, the

parameter κei can be computed as the road segment’s mean
travel time divided by the calculated parameter θei : κei =
E[Ti]
θei

= µi

θei
=

µ2
i

σ2
i

.
Based on the previous works that utilize vehicle trajectories

for estimating vehicle driving delays [28], we suppose that the
travel times of the road segments included in the trajectory
are statistically independent random variables following the
Gamma distribution. Thus, we estimate the total travel time
of the trajectory of the kth EV by summing up the travel
times of the road segments included in the trajectory from
the EV’s current position pk to ei, i.e., Tki =

∑ei
j=pk

Ti.
The mean and variance of the statistical distribution of Tki
can be computed as: E[Tki] =

∑Ne

i=1E[Ti] =
∑Ne

i=1 µi and
V ar[Tki] =

∑Ne

i=1 V ar[Ti] =
∑Ne

i=1 σ
2
i

Thus, the statistical distribution of Tki can be modeled
as Tki ∼ Γ(Ki,Θi), where the parameters Ki and Θi are
computed as in κei and θei . Then, we can use this Γ(Ki,Θi)
to estimate the appearance probabilities of all the EVs at a
road segment during a specific time duration. Specifically,
given current time tc and a specific time duration with start
time ts and end time te, which is denoted as [ts, te], (e.g.,
[12:00,12:05]), an EV’s appearance probability at ei during
[ts, te] is measured by estimating the EV’s travel time to the
end of road segment ei:
P (ts−tc 6 Tki 6 te−tc) = F (te−tc;Ki,Θi)−F (ts−tc;Ki,Θi)

(1)
where Tki is the actual travel time of the trajectory connecting
current position pk and ei, and F (·) is the CDF of the Gamma
distribution with parameters Ki and Θi. The EV density of
each ei in the time duration is estimated by summing up the
appearance probabilities of all the EVs that will pass ei during
the time duration:

dvei =

Nv
i∑

j=1

Pj(t
s − tc 6 Ti 6 te − tc), (2)

where Nv
i is the number of EVs whose trajectories demon-

strate that they will pass ei during [ts, te].

C. Reinforcement Learning based MED Routing

The data analysis result in Section III-B2 demonstrates that
the number of driving EVs has rise and fall during different
time slots and changes in real time. Thus, we need to solve
an important problem: how to efficiently optimizes the driving
route of MEDs according to the short-term change of some
EVs’ trajectories?
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We propose a Reinforcement Learning (RL) based routing
model to determine the action of all the MEDs, which include
MEDs driving on the road network and the MEDs standing
by in the parking lots, based on the real-time EV traffic status.
We define an action as the driving decisions of all the MEDs,
which include serving MEDs and out-of-service MEDs. The
driving decision of an MED is which road segment the MED
will drive to or driving to the MED’s nearest parking lot. The
MEDs chosen to take action will drive to their respective road
segments to serve EVs or the nearest parking lots to stand by.
The RL model will be utilized for MED routing only when
the real-time EV traffic has significant change.

Generally, given a current state st describing the status of
the road network (e.g., current positions of each MED and
each EV), the RL model outputs an action at that maximizes
the reward. We define the reward caused by an action of the
MEDs as the weighted sum of the estimated total number of
EVs that can be served by the MEDs, the sum of the MEDs’
service latency and the number of serving MEDs. We use the
MED’s travel time of the route connecting its current position
and the end position on its destination road segment as the
service latency of the MED. As long as the RL model’s policy
π : st 7→ at is optimized, we can use it to output the optimal
action that maximizes the reward for guiding the movement of
the MEDs. Driven by this reward, the RL model will choose
the minimum number of MEDs nearby the road segments with
new short-term EV traffic change for service and determine the
chosen MEDs’ driving routes. The chosen MEDs will serve
the new EVs that they encounter when driving in their routes.
The rest MEDs won’t take any action, but keep following their
original driving routes or drive to their nearest parking lots to
stand by. In the following, we introduce the state, action and
reward of our RL model.

1) State Set: Since the RL model is expected to output
the driving route for each MED, which maximizes the total
number of EVs that can be encountered by all the MEDs,
we take into account the estimated number of encountering
EVs of each MED given a certain destination road segment
for the MED. For example, for the kth MED (denoted by
mk), we first determine the shortest trajectory connecting the
MED’s current position (denoted by pk) and the end of each
road segment in the road network (ej ∈ E) using the Dijkstra
algorithm [31], which is denoted as Φkj = {pk, . . . , ej}.
We then calculate the number of encountering EVs in each

trajectory. Based on MED mk’s current SoC and the energy
consumption of a trajectory, we can find the road segments
that MED mk cannot reach. That means MED mk will not
be chosen to drive to these road segments, and we set the
number of encountering EVs for these road segments to 0.
That is, driving to such a road segment produces no reward in
the RL model. To calculate the number of encountering EVs
in a trajectory, we calculate the sum of the EV densities of
the road segments in the trajectory. Specifically, for each road
segment ei in the trajectory, we estimate the general arrival
timestamp range [tsi , t

e
i ] of the MED. For each ei, we utilize

Equation (2) to calculate the EV density dvei during the arrival
timestamp range [tsi , t

e
i ]. Note that the EV density is calculated

based on reported short-term mobility information of all the
EVs, so dynamic change of the EV traffic has been reflected
in their short-term mobility information because it shows the
actual driving route of the EVs. Finally, we use the sum of all
the EV densities of the road segments Dk =

∑
ei∈Φkj

dvei as
the kth number of encountering EVs if the MED drives to ej .

Moreover, since an MED’s current position determines its
possible service latency to other candidate road segments and
we expect the RL model to choose the serving MEDs that have
the shortest service latency, we also need to include current
position of each MED in formulating the state set. Thus, the
state set S consists of current position of each MED and
each MED’s estimated numbers of EVs that the MED may
encounter in driving its trajectory, which is defined as:

s = (pk,Dk | ∀ mk ∈M) ∈ S (3)

where s denotes the state. pk is current position of the kth

MED. Dk = {
∑
ei∈Φkj

dvei |ej ∈ E} is the estimated potential
number of EVs that the kth MED can charge if it drives to ej .
ej ∈ E means that Dk is calculated for the total set of road
segments E in the road network. mk denotes the kth MED.
M denotes the set of all the MEDs.

2) Action Set: The action output by the RL model de-
termines where to drive to for each MED. Specifically, the
action of the kth MED, which is denoted as xk, has three
possibilities: driving to a destination road segment (denoted
by xk = ej ∈ E), driving to the parking lot nearest to
its current position (xk = 1), or follow its original driving
decision (xk = 0). If xk = ej ∈ E or xk = 1, we determine
the kth MED’s shortest driving route that connects its current
position and the end of the destination road segment ej or the
nearest parking lot by using an existing routing method (e.g.,
Dijkstra algorithm [31]). If xk = 0, the MED will not change
its current driving decision, but keep following its original
driving route. Thus, the action set A is defined as:

a = (xk | ∀ mk ∈M) ∈ A, (4)

where a denotes the action vector that indicates where to drive
to for each MED. xk denotes the action of the kth MED. mk

represents the kth MED. M represents the set of all the MEDs.
3) Reward: We expect the MEDs to cover the road seg-

ments with new EV traffic as early as possible. That is, the
MEDs’ service latency is expected to be minimized. Therefore,
the main goal of the RL model is to maximize the total number



of EVs served by all the serving MEDs, and meanwhile
minimize the number of the serving MEDs and the sum of
all the MEDs’ service latency. The reward function resulted
by the xk of all the MEDs is defined as the weighted sum of
the total number of potential EVs that the MEDs can serve, the
sum of the MEDs’ service latency and the number of serving
MEDs, which is formulated as:

r(st, at, st+1) = αNv − βT d − γNm (5)

where st is the state at current time; st+1 is the next state
caused by the action at; |M| is the maximum number of
MEDs that can be used for charging service; The reward is
determined by Nv , T d and Nm. Nv is the total number of
EVs that can be encountered by all the MEDs. Under a certain
action and current state, the more EVs that can be encountered
by the MEDs, the higher reward the action will result in. TD is
the service latency of the MEDs. Under a certain action and
current state, the shorter driving latency that all the serving
MEDs suffer from, the higher reward the action will result
in. Nm denotes the number of serving MEDs. The fewer
MEDs are chosen to serve, the higher reward the MEDs will
contribute. We use the constants α, β and γ (α, β, γ ∈ [0, 1]
and α+β+ γ = 1) as the weights of the metrics Nv , T d and
Nm, respectively.

The total number of encountering EVs metric is the total
number of EVs that all the MEDs will encounter by taking
different driving decisions. When determining where to drive
to for each MED, we do not expect that too many MEDs from
driving the same road segments during the same time because
this reduces the utilization efficiency of the MEDs’ service
ability. Therefore, we globally estimate the total number of
EVs that can be encountered by all the MEDs on the road
network. Specifically, we first determine the union set of the
road segments covered by all the MEDs’ driving routes, which
is denoted as E′ =

⋃
mk∈M Φkj . Then, we calculate the sum

of the EV densities of all the road segments in E′ as the total
number of EVs that can be encountered by the MEDs. That
is, this metric is calculated as:

Nv =
∑
ei∈E′

dvei , (6)

where ei denotes a road segment included in E′. Note that
Nv is calculated from the state st and the action of choosing
certain MEDs to drive to ei. The more EVs encountered by
the MEDs, the higher reward that the action will result in.

The MED service latency metric is the sum of the service
latencies of all the MEDs T d =

∑|M|
k=1 T

d
k , where T dk is the

service delay of the kth MED. Specifically, the kth MED’s
service latency to ej if it is chosen to drive to the end of
the road segment ej (xk = ej ∈ E), which is denoted with
tkj =

∑
ei∈Φkj

lei
vi

, where lei is the length of ei, and vi is the
speed limit of ei. Note that if the kth MED takes no action
(xk = 0), its service latency is the driving time of its original
driving route Φkd, which connects its current position (pk) and
the end of its original destination road segment (ed). That is,
its service latency is calculated as: tkd =

∑
ei∈Φkd

lei
vi

. or it
drives to the nearest parking lot (xk = 1), the effect of the

kth MED’s service latency is 0. Thus, T dk is calculated as:

T dk =


tkj , if xk = ej ∈ E
tkd, if xk = 0

0, if xk = 1,

(7)

where tkj and tkd are determined based on the kth MED’s
current position, which is from the state st, and the new
destination road segment or original destination road segment
indicated by the kth MED’s driving decision (xk), which is
from the action at. The shorter driving latency the MEDs will
have, the higher reward the MEDs will contribute.

The MED serving metric is the total number of MEDs
chosen to continue service Nm =

∑|M|
k=1 b

m
k , where bmk

denotes whether the kth MED is chosen to continue its service.
If xk = ej ∈ E or xk = 0, the kth MED is chosen to drive to a
new destination road segment to cover the new short-term EV
traffic change or take no action but to continue their original
driving route, respectively. In both cases, the kth MED will
continue its service (i.e., bmk = 1). If the kth MED is chosen
to drive to the nearest parking lot (xk = 1), the kth MED will
stop its service (i.e., bmk = 0). Therefore, bmk is calculated as:

bmk =

{
1, if xk = ej ∈ E or 0

0, if xk = 1,
(8)

where xk is the kth MED’s driving decision, which is from the
action at. The fewer serving MEDs are required, the higher
reward the MEDs will contribute because fewer serving MEDs
will result in fewer cost.

4) Obtaining the Optimal Policy: We use the Deep Neural
Network (DNN) to obtain the optimal policy as in [32].
Given a state st, the optimal policy π∗ is defined as the map
π∗ : st 7→ at that maximizes the reward received by taking
the corresponding action at. To discover the optimal action
strategy that maximizes the reward under various states, we
need historical movement data of MEDs for offline training of
the RL model. However, there is no historical movement data
of MEDs for training directly. Therefore, we collect movement
data of MEDs through simulating the random movement of
MEDs for a long time. Specifically, we record the generated
MED routes, the positions of each MED and the change of
EV densities of all the road segments with a short recording
period (e.g., 1 minute). After recording for a relatively long
time (e.g., 30 days), which is defined as collection period, we
use the MED movement data collected in the collection period
to train the RL model. Then, after every collection period,
we repeat the training process with the newly collected MED
movement data. Note that in the first collection period, the RL
model is not yet trained, we will only rely on collecting the
historical MED movement data generated from the simulated
random movement of MEDs. In the later collection periods,
the historical MED movement data will be collected from the
output of the RL model.

V. PERFORMANCE EVALUATION

A. Comparison Methods
We compare the performance of MobiCharger (MC in short)

in maintaining the EVs’ SoC with a representative EV charg-



ing scheduling method [5] (Schedule in short), a representative
Multi-Objective Route Planning method [11] (MORP in short),
and our previous work for optimizing the charging efficiency
of EVs [33] (WPT-Opt in short). Specifically, Schedule takes
into account the historical charging preference, real-time tra-
jectory of each EV, current road traffic state and charging
station availability to schedule target charging stations for
the EVs in order to minimize the charging time of the EVs
(i.e., charger seeking time before reaching the target charging
station plus the waiting time at the target charging station).
MORP considers the change of traffic volume and determines
the optimal route that minimizes energy consumption, travel
time, charging monetary cost on the way, and range anxiety
for EVs. WPT-Opt utilizes game theory to maximally avoid
congestion of EVs while minimizing the EVs’ charging time
cost to their target chargers. To make the methods comparable,
we assume that they all use wireless chargers with the same
charging rate. The difference is that in Schedule and MORP,
there are only charging stations equipped with wireless charg-
ers. While in MC, there are only MEDs equipped with wireless
chargers. The total number of chargers in the three methods are
the same, and the distribution of chargers follows the existing
charging stations in Shenzhen.

B. Experiment Settings

We suppose that every EV starts driving with a random
SoC above a lower bound SoCmin at the beginning of a day.
The SoC lower bound SoCmin is set to 20%. The battery
capacities of the EVs follow a uniform distribution from 65
kWh to 85 kWh, which is the common battery capacity of
the EVs currently in use in Shenzhen [5]. The charging rate
of a charging infrastructure (in charging station or MED) is
set to 150 kW [34]. The energy consumption rate of an EV
is a 0.425 kWh/km [25]. We use the historical EV trajectory
data from July, 2014 to June, 2015 to train the RL model
that determines the route of the MEDs with the maximum
reward. Specifically, we utilize Flow [35], which is a vehicle
traffic simulation framework with the integration of deep RL,
to implement the RL based MED routing method. Flow utilizes
SUMO [36] to simulate the states and actions of EVs and
utilizes DNN to train the optimal route of the MEDs with
the maximum reward. We use a Deep Q Network with the
following settings: 3 layers with 512 neurons in each layer;
the activation function is Rectified Linear Unit (ReLU); the
learning rate is 10−4; the size of relay buffer is 105; the size
of a batch sampled from replay buffer for training is 32; the
discount factor is 0.99. We use SUMO [36] to simulate the
movement of 1,000 EVs for 24 hours on Shenzhen’s road
network, and directly use the positions of existing charging
stations in Shenzhen.

To collect training data, we simulate the movement of
multiple MEDs to explore as many states and actions as
possible to obtain the optimal policy. Specifically, 1) we
suppose that each MED’s initial state starts from a road
segment randomly selected from current cruising graph G̃ with
SoC = 1; 2) we simulate the movement of each MED from

one road segment to another road segment randomly selected
from its candidate road segments based on its SoC, which
means the MEDs transfer from one state to another state by
taking different actions. 3) we utilize the historical vehicle
trajectory information at each time when the MEDs take an
action in the simulation to calculate the reward. The RL model
calculates the cumulative reward resulted by each action at
each state (i.e., defined as the Q value of the actions). After
exploring over all the possible states and actions that appear
during the training process, the RL model finds the optimal
policy that maximizes the Q value for each possible state,
starting from the initial state. The metrics we measured are:
• The SoC of EVs: In each time slot throughout a day, we
measure the SoC of each EV, and calculate the medium, the
5th percentile and the 95th percentile values of all the EVs’
SoC in each time slot.
• The number of charges of EVs: For each EV, we measure
its number of received charges throughout a day. Then, we
measure the CDF of the number of charges of all the EVs.
• Energy supply overhead: For each charger, we measure its
amount of energy supplied to EVs in each time slot throughout
a day. Then, we calculate the sum of all the chargers’ energy
supplied to EVs in each time slot.
• Average vehicle flow rate. We define the vehicle flow rate
of a road segment as the number of vehicles driving through
the road segment per unit time [31]. We measure the average
vehicle flow rate of all road segments per hour in a day.

C. Experimental Results

1) The SoC of EVs: Figure 7 shows the medium, 5th

percentile and 95th percentile values of all the EVs’ SoC
after every two hours in a day under different methods. We
can see that the results of MobiCharger is much more stable
than the other methods. The medium values generally follow:
MC>WPT-Opt≈Schedule≈MORP.

In Schedule, MORP and WPT-Opt, all the EVs kept driving
until their SoC is about to be exhausted. Therefore, from 00:00
to 04:00, most EVs’ SoC kept dropping. By the time 04:00,
most EVs began to run out of SoC (<20%) and drove to a
charging station for a full recharge, which makes their medium
SoCs return to around 0.8 at around 04:00. However, after
04:00, different EVs consume different amount of SoC and
exhausted their SoC at different times, which causes the EVs’
medium SoCs in these two methods to be very low. The reason
behind this is that except for driving to a charging station, the
EVs in the three methods do not have alternative method to
replenish their SoC.

In contrast, the EVs’ medium SoCs in MC remain high
and are relatively more stable throughout the day. Generally,
MC increases the medium SoC of all EVs by 50% during all
time slots. This is because that the driving route of MEDs
in MC fully considers the future trajectories and routines of
the EVs and can create abundant charging opportunities for the
EVs. To illustrate that the MEDs in MC proactively contributes
much charging opportunity for the EVs, we further measure
the number of charges of all the EVs throughout the day.
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2) The Number of Charges of EVs: Figure 8 shows the
CDF of the numbers of charges of all the EVs under dif-
ferent methods. We can see that the results generally follow:
MC>WPT-Opt≈Schedule≈MORP.

The results of Schedule, MORP and WPT-Opt are quite
similar to each other. Around 80% of the EVs were charged
for at least 5 times during a day. This is because that the EVs
in these methods follow the “drive-exhaust-recharge” pattern,
so the number of charges is equal to the number of SoC
exhaustion of the EVs. Different EVs have different numbers
of charges depending their different energy consumption.

In contrast, the numbers of charges of most EVs in MC are
much higher than those in Schedule and MORP. Around 80%
of the EVs received more than 25 charges in MC. Generally,
MC increases the number of charges of EVs by almost 100%.
This is because that the RL based routing method adjusts
the MEDs to better cover the changed EV traffic in real
time, which increases the numbers of charges of most EVs.
These results show that the routing actions generated by MC
can enable the MEDs to effectively cover the EV traffic.
Combining the SoC results illustrated in Figure 7, we can
see that MC can maintain the EVs’ SoC above a high level
through letting the MEDs proactively adapt to the EV traffic.

3) Energy Supply Overhead: Figure 9 shows the overall
energy supply overhead of different methods under differ-
ent hours throughout a day. The results follow: MC≈WPT-
Opt>Schedule≈MORP.

From previous works [5], we know that the electric taxicabs
and Dada cars in Shenzhen prefer to charge at around 03:00-
05:00, 11:00-13:00, 16:00-18:00 and 20:00-22:00 (i.e., the
EVs’ charging time pattern). We can see that the energy supply
overhead in Schedule and MORP is highly correlated with
the EVs’ charging time pattern. The energy supply overhead
reaches the peak values at around 03:00-05:00, 09:00-13:00,
16:00-18:00 and 20:00-22:00, which matches the charging
time pattern of the EVs in Shenzhen. This is because that these
EVs simultaneously charge at the charging stations and create
much energy supply overhead during these time slots. It is also
worth noticing that during the busy hours when the EVs are
driving (i.e., 06:00-11:00, 14:00-15:00 and 19:00-21:00), the
energy supply overhead reaches the valley values. The results
in Schedule and MORP illustrate that all the EVs follow the
“drive-exhaust-recharge” pattern, which causes they exhaust
and recharge at around the same time. Therefore, they follow

almost the same charging time pattern, which may cause them
to compete for the limited charging stations simultaneously.

In contrast, the energy supply overhead in MC and WPT-Opt
is much more stable than that in Schedule and MORP. The
energy supply overhead of these two methods only slightly
rises at around 03:00-05:00, 09:00-13:00, 16:00-18:00 and
20:00-22:00 and slightly falls at around 06:00-11:00, 14:00-
15:00 and 19:00-21:00, which is generally consistent with the
results in Schedule and MORP. This is because that in MC,
the MEDs have proactively charged many EVs even if their
SoC did not exhaust. Thus, most EVs did not need to drive
to nearby charging stations to receive a full recharge. While
in WPT-Opt, the charging demand of EVs is evenly scheduled
to avoid congestion at the chargers and on the way to the
chargers, so the charging overhead is correspondingly evened.
As a result, the energy supply overhead generated by the EVs
during specific time slots is handled by the MEDs.

4) Average Vehicle Flow Rate: Figure 10 shows the average
vehicle flow rate of all the road segments per hour under
different methods. We can see the results follow: MC>WPT-
Opt>MORP>Schedule. These results are generally consistent
with the change of energy supply overhead of Schedule and
MORP illustrated in Figure 9.

In Schedule, there is no specific method to avoid traffic con-
gestion when generating the driving route for EVs. Therefore,
during the time slots with high energy supply overhead, the
vehicle flow rate is affected and decreases due to the EVs’
competition for charging stations. In comparison, the routing
of MORP considers the change of EV traffic, which effectively
avoids the traffic congestion when generating the driving route
for EVs. However, its average vehicle flow rate during time
slots with high energy supply overhead is still lower than that
in MC. In contrast, the average vehicle flow rate of WPT-Opt
during the time slots when many EVs looked for recharge
(i.e., 03:00-05:00, 09:00-13:00, 16:00-18:00 and 20:00-22:00)
remains quite high. This is because that the game theory based
approach maximally avoided the congestion at the chargers
and on the way to the chargers.

We can observe that the vehicle flow rate of MC is higher
than WPT-Opt during some time slots. This is because that
the EVs have sufficiently high SoC during these time slots
and do not need to compete for the limited charging stations,
which may cause traffic congestion on the way to the charging
stations. Therefore, the EVs can drive their original driving



paths without traffic congestion, which results in the high
average vehicle flow rate in MC. The exceptions happen at the
time slots with busy traffic (i.e., 06:00-11:00, 14:00-15:00 and
19:00-21:00), which is due to the fact that the road network is
congested by too many driving EVs during these time slots.

VI. CONCLUSION

Dynamic wireless charging for EVs enables an MED to
charge an EV in motion. The deployment of MEDs adaptive
to the change of the number of driving EVs is essential for
maintaining the SoC of EVs. Our proposed MobiCharger is
the first to optimize the driving paths of MEDs to minimize the
total number of MEDs, maximize the number of encountering
EVs of all the MEDs, and meanwhile ensure that each EV
has sufficient SoC all the time. The design of MobiCharger
is based on the observations obtained through analyzing a
metropolitan-scale vehicle mobility dataset. We utilize the
combination of EVs’ current trajectories and the EVs’ routines
to estimate the density of EVs and the cruising graph that the
MEDs should cover. Then, we develop an online method that
utilizes RL to adjust the driving route of MEDs when the real-
time vehicle traffic changes. We conducted trace-driven exper-
iments on SUMO to verify the performance of MobiCharger.
Compared with previous methods, MobiCharger increases the
medium state-of-charge of all EVs by 50% during all time
slots, and the number of charges of EVs by almost 100%.
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